ORACLE

Oracle® Retail Integration Bus
Implementation Guide

Release 19.0

F22947-01

January 2020

Oracle Retail Integration Bus Implementation Guide, Release 19.0
F22947-01

Copyright © 2020, Oracle and/or its affiliates. All rights reserved.
Primary Author: Sanal Parameswaran

Contributing Author: Alex Meske

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license,
transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse
engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is
prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it
on behalf of the U.S. Government, then the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated software,
any programs installed on the hardware, and/or documentation, delivered to U.S. Government end users
are "commercial computer software" pursuant to the applicable Federal Acquisition Regulation and
agency-specific supplemental regulations. As such, use, duplication, disclosure, modification, and
adaptation of the programs, including any operating system, integrated software, any programs installed on
the hardware, and/or documentation, shall be subject to license terms and license restrictions applicable to
the programs. No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management
applications. It is not developed or intended for use in any inherently dangerous applications, including
applications that may create a risk of personal injury. If you use this software or hardware in dangerous
applications, then you shall be responsible to take all appropriate fail-safe, backup, redundancy, and other
measures to ensure its safe use. Oracle Corporation and its affiliates disclaim any liability for any damages
caused by use of this software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of
their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks
are used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD,
Opteron, the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced
Micro Devices. UNIX is a registered trademark of The Open Group.

This software or hardware and documentation may provide access to or information about content,
products, and services from third parties. Oracle Corporation and its affiliates are not responsible for and
expressly disclaim all warranties of any kind with respect to third-party content, products, and services
unless otherwise set forth in an applicable agreement between you and Oracle. Oracle Corporation and its
affiliates will not be responsible for any loss, costs, or damages incurred due to your access to or use of
third-party content, products, or services, except as set forth in an applicable agreement between you and
Oracle.

Value-Added Reseller (VAR) Language
Oracle Retail VAR Applications

The following restrictions and provisions only apply to the programs referred to in this section and licensed
to you. You acknowledge that the programs may contain third party software (VAR applications) licensed to
Oracle. Depending upon your product and its version number, the VAR applications may include:

(i) the MicroStrategy Components developed and licensed by MicroStrategy Services Corporation
(MicroStrategy) of McLean, Virginia to Oracle and imbedded in the MicroStrategy for Oracle Retail Data
Warehouse and MicroStrategy for Oracle Retail Planning & Optimization applications.

(ii) the Wavelink component developed and licensed by Wavelink Corporation (Wavelink) of Kirkland,
Washington, to Oracle and imbedded in Oracle Retail Mobile Store Inventory Management.

(iii) the software component known as Access Via™ licensed by Access Via of Seattle, Washington, and
imbedded in Oracle Retail Signs and Oracle Retail Labels and Tags.

(iv) the software component known as Adobe Flex™ licensed by Adobe Systems Incorporated of San Jose,
California, and imbedded in Oracle Retail Promotion Planning & Optimization application.

You acknowledge and confirm that Oracle grants you use of only the object code of the VAR Applications.
Oracle will not deliver source code to the VAR Applications to you. Notwithstanding any other term or
condition of the agreement and this ordering document, you shall not cause or permit alteration of any VAR

Applications. For purposes of this section, "alteration" refers to all alterations, translations, upgrades,
enhancements, customizations or modifications of all or any portion of the VAR Applications including all
reconfigurations, reassembly or reverse assembly, re-engineering or reverse engineering and recompilations
or reverse compilations of the VAR Applications or any derivatives of the VAR Applications. You
acknowledge that it shall be a breach of the agreement to utilize the relationship, and/or confidential
information of the VAR Applications for purposes of competitive discovery.

The VAR Applications contain trade secrets of Oracle and Oracle's licensors and Customer shall not attempt,
cause, or permit the alteration, decompilation, reverse engineering, disassembly or other reduction of the
VAR Applications to a human perceivable form. Oracle reserves the right to replace, with functional
equivalent software, any of the VAR Applications in future releases of the applicable program.

Contents

Send Us YOUr COMMENTScoo.cooiiiiicee s Xi
PPEIACE ...ttt Xiii
AUAIEIICE ...ttt ettt ettt et te et e e te et e eteestesas e seesaesbeessesbeessesbeessesseessesseensesrsenbesreensenreans Xiii
Documentation AcCesSIDIlityccociiiiiiiiiiiiiiiiii e Xiii
Related DOCUIMENTESccueeviriiiiieieieietetetete et e e s sessesbeste st esseseeseasaesaasassessessessessessessessassessnsessensenses Xiii
CUSTOMET SUPPOIt ...vtititiititet s Xiv
Review Patch DOCUMENTATIONccvieviiiiiiiieceieiectecte ettt ettt et te et e ebeesaeereeasesseessesseersesesreens Xiv
Improved Process for Oracle Retail Documentation Corrections..........c.ccccccucucueucieieercienieicennennns Xiv
Oracle Retail Documentation on the Oracle Technology Networkcccooeviiiiiiiiiiccicne XV
CONVEINTIONS ...vvieuvieiieiieeeieeteesteeteesteessteesteessteeseessseassaeassaasseesssaassaenssessssassseassaesseasseesssesaessseenseesssensseenns XV

1 Introduction

2 Standards and Specifications

Java Platform Enterprise Edition (Java EE)ccccoiiiiiniiiceceecceeeeee s 2-1
JAVA EE SEIVET ...uviiieieeiieiieteeeeet ettt ettt ettt e s s et e s s e e st e s st e s e sseensesseensesssensesseensansennsensesnes 2-1
Java Message Service (JIMS) ... s 2-1
JIMIS PrOVIAET ...ttt ettt ettt ettt et st et e et et e st esessees e s e sessassensensensansensensensensaneaseesensenes 2-2
Java Management Extensions (JMX)cccccoviiiiiiiiiniii s 2-2

3 Core Concepts

Key Functional Requirements ..o s 3-1
Guaranteed Once-and-Only-Once Successful Delivery ..o, 3-1
Preservation of Publication SeqUencecccooviiiiiiiciieiniccccc e, 3-2

Message Family and Message TYPesccccoovvvvinininiiininiiiiiiii s 3-2
Foundation MeSSagesc.oirurieiiiiciiiicice e 3-2
Transactional MESSAGES.........ccccuiiiiiiriiiiiiiiiiiii e 3-3

RIB Message Envelope and Payloads.............cccccooiiiiiiiiiiiiniiiiiiies 3-3

Message Life Cycle.........coooiiiiiiiiiiiii s 3-3

Messaging COMPONENLS............coiuiiiiiiiiiiiii s 3-5
RIB Subsystem COMPONENtScoouriiiirieieiicie e 3-5

AAPTETS ..o 3-5
JMS Domains, Destinations, SUbSCIIPIONSccocvuviviviiiiiiiniiiccas 3-6
JMS MeSsage SElectOrc.ouiiieieiiiecii 3-7

Additional RIB JMS Message Properties ..o 3-7

Integration Gateway Services (IGS).......ccouoiiiiiiiiiiiic 3-9
IGS INEETTACES ... s 3-9
Integration t0 IGS........c.ouiii s 3-10
IGS Deployment Considerationscceuvecieieiicicieiiccteeec i 3-11

IGS and WebLogic Server (WLS) ClUStering..........ccocvueuvuvvevererernnnerrrnrsereeccenes 3-11
Simple Message FIOW ...ttt 3-11
The RIB HOSPItalcocoiiiiiiiiiiiiiiiicc s 3-12

RIB Hospital Dependency Checkccccccciiiiiiiiiieiiiceeeeeeeeeeeeeeeeeeeeeeeee e 3-12

RIB HOSPital INSETt.....c.cviviviiiiiiiiiiiiicicictcc s 3-12

RIB Hospital Tables..........c.ociiiiiiiicii s 3-13

RIB HOSPital REIY ...cocviiiiiiiiiiiiiiciiiiii s 3-14
PUB Retry AdApter.......coouiueiiiiiiiic st 3-14
Hospital Attempt (Retry) COUNt ..o 3-17
JMS Delivery COUNL......ccviiiiiiiiiiic e s 3-17

4 Oracle Retail Application APIs

PL/SQL Stored Procedure APIScooouiiiiieiicieeeeete ettt ettt te e veeve e s aeereesareesbaesssesnbeesnennns 4-1
Oracle CLOB APIS.....cuicieiieieieetee ettt te e st e s tessaessessaesbaesaesseesaessaessesseessessesssansesssessessees 4-1
RIB_XML and RIB_SXW Database Packages............ccccecevuiiiiiiiinniiiiiiiniiiiiiens 4-2

Oracle ODJect APISc.cciiiiiiiiiicccceee st 4-2
RIB Related Database Tables..........cceeieiiiieiiiieiirieiesieeteeete sttt 4-2

Detail Architecture - PL/SQL APPS.....cooiiiiiieiiieiectei s 4-3
Oracle Retail Java EE APIScc.ooooiiiiiieieceee sttt ettt et e s s ssessaessessseseessensaensenseenes 4-3
Detail Architecture Java EE APPS ... 4-4
Oracle Retail SOAP APIS........ooiieieieeeeeeteete ettt et te et s e et e e e et e ereesseessesseesaestesssessaessesseessenseenes 4-4
API Return Statts COAESoocevvieieiieieiieieseeteet et ettt te st este e et et e essesseensesseessesnsensesseesenseens 4-4
PL/SQL GETNEXT RetUrn COAeS.ccouiiiuiieiiiiieeieeeiie ettt et eeteeeveeeteesveeeveesaneevsesaneenveessseenseens 4-4
PUB_RETRY RetuUrn COAES.......ccvevuiiieiiitieieciteieeieereeteesteeteesteeeesteeaesseesaesveessesseessessesssesseessesseenns 4-4
CONSUME RetUIT COE ..oviiiiiiiieieieiieeteeetetietestestestestesaessessessessessssessessessasessessessessessessesessensens 4-4

5 Pre-Implementation Considerations

RIB Software Lifecycle Management..............cccccooooiviiiiiiiiiiices 5-1
Centralized Configuration and Management...............c.cccocoeviiiiiiiiiiniies 5-2
Physical Location Considerations................c.ccccoiiiiiiiiiiiicees 5-3
Pre-implementation Considerations for Multibyte Deployments................ccccccoviiiiiiinnn. 5-3
Error Hospital SIZe ... 5-4
JMS Server ConsSiderationsc.ccccoeriiiirinininenestcsest ettt ettt ettt 5-4
Using Multiple JIMS SEIVETS......cocvvviiiiiiiiiiiicc ettt 5-5
Oracle Streams AQ JIMSouiiiiiiiiieett ettt sttt ettt b e sae st st e st e e et ebeebenaea 5-5
High Availability Considerations...............cococoviiiiiiiniiiiii s 5-6
Oracle Database Cluster (RAC) CONCEPLSccueuememeueuemimeieiiieieieieieieieieieireeeeeeeseeeseeeees e 5-6
rib-<app> application and Oracle Database Cluster (RAC)cccccevvviiniiiiiiiiiiiiceeens 5-7
WebLogic Server Cluster CONCEPLSovvuiiiiiurieiiiiceeicc s 5-7
rib-<app> application and WebLogic Application Server CIUSter..........cccccoeoeeuiuiecceccennes 5-7

vi

10

1

12

Deployment Architecture and Options

Recommended Deployment Options..............ccccoeiiiiiiiiiiiiiiiiiins 6-1
Distributed Deployment Alternative.............cccooovniiiiiiiiiiies 6-2
AAVANTAZES ..ot 6-2
DiSAdVANtAZES.oucveiiieciei et 6-2
Who Should Use This Configuration?ccccceiiiciiiiieiieeeeeeeneeieeneeneseneeenenenseenenes 6-3
Centralized Deployment Alternative ..o 6-3
AAVANTAZES ..ecvveiet e 6-3
DHSAAVANTAZES.vvvviiciiiiciiice ettt 6-4
Who should use this Configuration?..............coeiioiiiiiii 6-4
CONCIUSIONS ...t 6-4

Cloud Enhancements

Configuring RIB-App as a Soap-App for Hybrid-Cloud Deploymentcccccccevvvnnnnnnn. 7-2
Configuring RIB-RWMS for Hybrid Cloud Deployment Topology.............ccccevvvinininiiiinnnns 7-3

Configuring RIB-RWMS as Master Application..........ccceuiiciiiiiiiieiiiiicece, 7-3
Configuring RIB-RWMS as Slave Application.............ccccocoiiiiiiiiinininicn 7-5

RIB Self-Service Enablement

Provisioning RIB-Adaptersccccooiiiiiiiiiiiii s 8-2
Provisioning System OPtions ... 8-4
Provisioning InjectorService URLcccccoooiiiiiiiiiicr s 8-5
RIB ServiceMOMItOrcooviiiiiiiiiiiiiccc e 8-5

Implementation Process

Implementation Verification and Validation..............ccccoooiiiii, 9-2
Implementation Environment Verificationccccocveiiiiiiiiiiiiiiiieeeeceeeceeeeennes 9-2
Integration Environment Testabilitycoooooviiiiiiiii e, 9-2

Performance

Performance FActOrs ... 10-1

Performance and Parallel Logical Chanmnelsccccocooiiiiiiiiiiiceccceens 10-1

Security

RIB Application Administrators Security Domainccccccvreiciinneiinnecinecceeenes 11-1

RIB System Administrators Security Domain.............ccooooiiiiiiiiiiccc 11-1

Monitoring

Monitoring the RIB at Run Time ..o 12-1

Instance and Central RePoSitory ... 12-1

Monitoring Data as XIML ... 12-2

Push Versus Pull...........ccooooi sttt 12-2

Service INterfaces. ... 12-2

Deployment Considerationscccoovviviiiiiiiininiiiiiii s 12-2

vii

13

14

viii

WHRAL IS QN EVENE? ..ottt et e et e et e e e ta e e saaesseaaeesentesessseeesnsneesnnresennes 12-2

How are Event Count and Messages Count Related?c.ccccoovvniinnin, 12-2
Adapter EVENES.....c.cooiiiiiiiiceeecce ettt 12-3
APPLication EVENtS...........ccoiiiiiiiiiiiii s 12-3
Event Collection Schedule..............cccooiiiiiiiiii s 12-3
Publisher Versus Subscriber Events..............ccccocooiiiniiiiii 12-3
TAFR INsStrumentation...........ccccocooiiiiiiiiiii s 12-3
Data Retention ... 12-4
Metrics Definitions ... 12-4

EVENt COUNES......coiiiiiiiiiiicic s 12-4

Adapter EXecution Timecooiruriiiiiiiicee 12-4

AP EXeCUtion TImMeccoviuiiiiiiiiiiiiiiciic s 12-4

AdApPter SLAtUSc.oviviiiiiiiccc s 12-4

Commits and ROIDACKS.........cccuiiiiiiiicccccc s 12-4

CPU and MEIMOTY ...ooviiiiiiiiiciieieeieieeeiee et 12-5

Error HOspital MEtriCs.......coiiiiiiiiiiiiiiiicicccie s 12-5

SETVET StatUS. ..ot e 12-5

RIB APPLLCAtioN STATUSovuiuimiiiiiiiiiiiiiiicciccccece et es 12-5
JIMS CONSOLE MELLICSceevniiiniiiieiiieieeeeee ettt sttt b ettt n e e 12-5
MONItOTing SEIVICES........cooviviiiiiitic s 12-5
APPLICAtION SEIVICES ...ttt aens 12-5
INtegration SeIVICES ...t 12-6
JIMS COMNSOLE S@IVICES ...ttt sttt sttt ettt ettt et sttt b e b e ene 12-6
Caching and Expiration of Data ... 12-6
Updates to Functional Artifact Deployment..............ccccocoooiiiiiiiniiiie 12-7
Turning Off MONItOIing..........ccccocovviiiiiiiiiiiiniiii s 12-7
Troubleshooting the Monitoring Framework ..., 12-7
ROIE Of RIC ... bbb s 12-7
ROIE Of JIMIS COMNSOLE......couiiiiiiiieiiiciintcerte ettt sttt ettt ettt b e st e e naenen 12-7
Performance Considerations ..o 12-7
DePENAENCYocooviiiiiiie s 12-8
Security (Monitoring SEIrVICeS)............ccooiiiiiiiiiiiiiiiiicce e 12-8
External Application Integration................cccooviiiiiiii 12-8

Integration with Fusion Middleware

General RIB to Fusion Middleware Architecture..............cccocoviririinininininencncceeeececeens 13-2
General Process of INtegration ...t 13-2
Configure FWM JMS Adapter to RIB AQ JMSccccciiiiiiiiiiiiiiiinicicrccnssene 13-3

RIB Customization/Extension

Prerequisites for RIB Customization................ccocoiiiiiiiiiiiiiiiccccccccceceeeenas 14-1
Rules for CUStOmMIZation...........cveuiviiiiiiiiiiii e 14-2
Message Family and Message Type Customization................cccccviiiiiiinniiiniie, 14-2
Adding a New Message TYPecccccviiiiiiiiiiiicei e 14-3
Message Flows with PL/SQL Applicationsccccccccuruveriiiieririririiirrreccereeeeeeeeeeeeeeeeeeeeeas 14-3
Procedure for Adding a New Message Type for PL/SQL Applications............cccc........ 14-3
Message Flows with Java EE Applications...........cccoeeveiiiininiiiiiicieiiceecc e, 14-5

15

Procedure for Adding a New Message Type for Java EE Applicationscccccoeveuene 14-6

Creating a New Message Familyccccooooiiiiiiiiiii 14-8
Additional RUIESooviiiiiiiiiiiii s 14-8
Procedure for Adding a New Message Family ... 14-9

Adding New Adapters...........ccooviiiiiiiiiiiii 14-12

Adding the Custom Adapter to the rib-integration-flows.xml File.........ccccoeciviiiiicnnes 14-12
Procedure for Adding the Flow to the rib-integration-flows.xml File........................... 14-12

Adding a Publishing Adapter for PL/SQL Applicationsc.cccooceieiiiiireinicineieicce, 14-13
Procedure for Adding a Publishing Adapter for PL/SQL Applications...........c.cc....... 14-14

Adding a Publishing Adapter for Java EE Applications..........ccccccovvviniiiinnnnnnnninne 14-15
Procedure for Adding a Publishing Adapter for Java EE Applications......................... 14-16

Adding a Subscriber Adapter for PL/SQL Applications..........cccccevuvveerverivnnnnnnirrnecnes 14-17
Procedure for Adding a New Subscribing Adapter for a PL/SQL Application.......... 14-17

Adding a Subscribing Adapter for Java EE Applicationscccocooociieiiiiiiiiiiiicee 14-19
Procedure for Adding a New Subscribing Adapter for a Java EE Application............ 14-19

Custom TAFR Adapters ... 14-20

TAFR Considerationsccccovviiiiiiiniiiniiiiiiii e 14-20
Transformation.........ccceiiiii 14-20
Filtering Configurationcccovceiiieiiieicecce s 14-20
ROUBNE 1ttt 14-21

Adding a New TAFR AdAPterccccovuiiiiiiririiirrirer e 14-21
Procedure for Adding a New TAFR Adapter...........cccoueuviniiiciniciiccccccc e 14-21

Custom TAFR Implementation ..o 14-21
Procedure for Completing Custom TAFR Implementationcccccceeiiicciiicncnes 14-22

Changing an Existing TAFR Adapter ..o 14-23

Adding a New rib-<app>......cccccoviiiiiiiiii 14-24

Adding a new PLSQL I1D-<aPP> ...ccovviiiiiiiiiirecccccccccciceceeeie e 14-25

Adding a New JavaEE rib-<app> ... 14-30

Adding a New SOAP 1ib-<app>....c.coiiiiiiiiiiic 14-34

Verification of RIB Customizations..............ccocooviiiiiiiiiiiiicccccccs e 14-38

Veritying the New Message TYPecccooccuiiiiiiciiicic e 14-39

Verifying the New Message Familyccoooiiiiiiiiiiiiiiiccccccces 14-39

Verifying the New Publishing Adapter ... 14-40

Veritying the New Subscribing Adapter ..o 14-41

Verifying the New TAFR Adapter ..o 14-42

Prerequisites for RIB LocaliZationcccoeoiiiiiiiiiiiiiiiiniineiecereceneeeseeseeenee e 14-43
RIB Localization - Business Objects

Prerequisites for RIB LocaliZationcccocecereiiiiiiiiiiiiniiiieiceereeeseeeneeseeenee e 15-1

Business Objects Localization ... 15-1

Localization Hooks in Base Business Objectscccovuviiniiiiiiiniiccccce, 15-2

Region Specific P1acehOlders ... 15-3

Localization CustomizZation...........ccciiiiiiiiiiiiicci s 15-5

Adding Localization Fields...........ccccccciiiiiiiiiiiiiiiic s 15-5

Adding Localization Customization Fields..........cccccccoiveiiiiiiiiiiiiiiiccccceeeceees 15-6

PaCKAZINGouiviviii b 15-6

16 Integration with External Applications

Implementing RIB-EXTccccoooiiiiiiiicse e 16-1
External Application as @ PUDLISheT ... 16-2
External Application as @ SUDSCIIDET ..o 16-2
Error Handling ... 16-3
Monitoring INtegration...........ccccceiviiiiiiiiiiiiii s 16-3

A External LDAP Configuration

Introducing the Oracle Internet Directory (OID)cccccooiiviiiiiiininiiiice A-1
Introducing the Microsoft Active Directory (AD) ..o A-1
Architecture OVeIVIEW ..o s A-2
Configuring the Oracle Internet Directory (OID) as an Authentication Provider in WebLogic......
A-2
Verifying the Oracle Internet Directory (OID) Configuration.............ccccccovvviiinnnnnnnnnnn, A-8
Using LDIF Scripts to Configure Users and Groups for OIDcccccevvniiiinnnnnnnnnnn, A-9
Integration-oid-create-groups.Idif ... A-9
Integration-oid-create-users.Idif ..., A-11
Configuring Active Directory (AD) as an Authentication Provider in WebLogic.................... A-24
Verifying the Active Directory (AD) Configuration.............ccccccoviiiinininiiiie, A-29

B Sample Data from RIB App Monitoring Service

C Sample Data from Integration Monitoring Service

Send Us Your Comments

Oracle Retail Integration Bus Implementation Guide, Release 19.0

Oracle welcomes customers' comments and suggestions on the quality and usefulness
of this document.

Your feedback is important, and helps us to best meet your needs as a user of our
products. For example:

= Are the implementation steps correct and complete?

= Did you understand the context of the procedures?

= Did you find any errors in the information?

= Does the structure of the information help you with your tasks?

= Do you need different information or graphics? If so, where, and in what format?
= Are the examples correct? Do you need more examples?

If you find any errors or have any other suggestions for improvement, then please tell
us your name, the name of the company who has licensed our products, the title and
part number of the documentation and the chapter, section, and page number (if
available).

Note: Before sending us your comments, you might like to check
that you have the latest version of the document and if any concerns
are already addressed. To do this, access the new Applications Release
Online Documentation CD available on My Oracle Support and
www.oracle.com. It contains the most current Documentation Library
plus all documents revised or released recently.

Send your comments to us using the electronic mail address: retail-doc_us@oracle.com

Please give your name, address, electronic mail address, and telephone number
(optional).

If you need assistance with Oracle software, then please contact your support
representative or Oracle Support Services.

If you require training or instruction in using Oracle software, then please contact your
Oracle local office and inquire about our Oracle University offerings. A list of Oracle
offices is available on our Web site at www.oracle.com.

xi

Xii

Audience

Preface

The Oracle Retail Integration Bus Implementation Guide provides detailed information
that is important when implementing RIB.

The Implementation Guide is intended for the Oracle Retail Integration Bus
application integrators and implementation staff, as well as the retailer’s IT personnel.

Documentation Accessibility

For information about Oracle's commitment to accessibility, visit the Oracle
Accessibility Program website at
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc.

Access to Oracle Support

Oracle customers that have purchased support have access to electronic support
through My Oracle Support. For information, visit
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info or visit
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs if you are
hearing impaired.

Related Documents

For more information, see the following documents in the Oracle Retail
documentation set:

» Oracle Retail Integration Cloud Service Release Notes

» Oracle Retail Integration Cloud Service Action List

» Oracle Retail Integration Cloud Services Administration Guide
» Oracle Retail Integration Bus Installation Guide

» Oracle Retail Integration Bus Operations Guide

» Oracle Retail Integration Bus Hospital Administration Guide

» Oracle Retail Integration Bus Support Tools Guide

» Oracle Retail Functional Artifacts Guide

» Oracle Retail Functional Artifact Generator Guide

n Oracle Retail Service-Oriented Architecture Enabler Tool Guide

xiii

» Oracle Retail Integration Bus Java Messaging Service Console Guide
» Oracle Retail Service Backbone Developers Guide

» Oracle Retail Service Backbone Implementation Guide

» Oracle Retail Integration Console (RIC) User Guide

» Oracle Retail Service Backbone Security Guide

» Oracle Retail Bulk Data Integration Implementation Guide

» Oracle Retail Bulk Data Integration Installation Guide

» Oracle Retail Financial Integration for Oracle Retail Merchandise Operations
Management and Oracle Financials Implementation Guide

» Oracle Retail Financial Integration for Oracle Retail Merchandise Operations
Management and Oracle Financials Installation Guide

» Oracle Retail Job Orchestration and Scheduler Implementation Guide

Customer Support

To contact Oracle Customer Support, access My Oracle Support at the following URL:

https://support.oracle.com

When contacting Customer Support, please provide the following;:

s Product version and program/module name

= Functional and technical description of the problem (include business impact)
= Detailed step-by-step instructions to re-create

= Exact error message received

= Screen shots of each step you take

Review Patch Documentation

When you install the application for the first time, you install either a base release (for
example, 19.0.000 or 19.0.0) or a later patch release (for example, 19.0.010 or 19.0.1). If
you are installing the base release and additional patch releases, read the
documentation for all releases that have occurred since the base release before you
begin installation. Documentation for patch releases can contain critical information
related to the base release, as well as information about code changes since the base
release.

Improved Process for Oracle Retail Documentation Corrections

Xiv

To more quickly address critical corrections to Oracle Retail documentation content,
Oracle Retail documentation may be republished whenever a critical correction is
needed. For critical corrections, the republication of an Oracle Retail document may at
times not be attached to a numbered software release; instead, the Oracle Retail
document will simply be replaced on the Oracle Technology Network Web site, or, in
the case of Data Models, to the applicable My Oracle Support Documentation
container where they reside.

This process will prevent delays in making critical corrections available to customers.
For the customer, it means that before you begin installation, you must verify that you

have the most recent version of the Oracle Retail documentation set. Oracle Retail
documentation is available on the Oracle Technology Network at the following URL:

http://www.oracle.com/technetwork/documentation/oracle-retail-100266.ht
ml

An updated version of the applicable Oracle Retail document is indicated by Oracle
part number, as well as print date (month and year). An updated version uses the
same part number, with a higher-numbered suffix. For example, part number
E123456-02 is an updated version of a document with part number E123456-01.

If a more recent version of a document is available, that version supersedes all
previous versions.

Oracle Retail Documentation on the Oracle Technology Network
Oracle Retail product documentation is available on the following web site:

http://www.oracle.com/technetwork/documentation/oracle-retail-100266.ht
ml

(Data Model documents are not available through Oracle Technology Network. You
can obtain them through My Oracle Support.)

Conventions

The following text conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated
with an action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for
which you supply particular values.

monospace Monospace type indicates commands within a paragraph, URLs, code
in examples, text that appears on the screen, or text that you enter.

XV

XVi

1

Introduction

The Oracle Retail Integration Bus (RIB) is a fully distributed integration infrastructure
that uses Message Oriented Middleware (MOM) to integrate applications. RIB enables
various Oracle Retail applications to integrate in asynchronous and near real time
fashion. RIB provides additional value added business and infrastructure services to
the Oracle Retail applications in addition to providing integration connectivity.

Each of the Oracle Retail Applications has its own implementation and deployment
strategies and approaches, as well as individual integration touch points defined. The
implementation of the RIB must take into account the overall Oracle Retail application
enterprise deployment architecture and try to fit into the model seamlessly.

oy 3™ Farty Systems
-

27 arty Web
Servoe Glents

—

-

Warshcuss

| maragomart Ssmem

e | L@_A =
et e = i

T, =]

s === P

3 Pary |

N A

Aiocaion 1 Rriail Prica Ee L |
I Masigermai | wanagano
Warahouan) itlhaa | | e l I -
Aytems \‘___{__ m.__}___t_ \-.__j.__
—————
Remma Frcay |
LA | wmscc et
1 oA
L
FIBRELNGE Prodect Mt LEGEND
[,
= RIS LGS Daman O Sprlar @ :,::"_';:" E:i Cintabasn @ Inierfnoe Roini
T |Ostrate ot s .
= 5
. = Serm Sysism Hurean JAE Toze
5 Foleags 13,25 { Y Exspinalio Ou bkl 0 Arioe
'E R (=)
= = Srakead Oa-page
-g EMACLE f)Rt Dot (] 1‘.’.\(3:.- O £oba
L s \[EER] " Domain

& -Ouacks Coporanon

RIB acts as a shared communication layer for connecting various Oracle Retail
applications and external applications throughout an enterprise computing
infrastructure. It supplements the core asynchronous messaging backbone with
additional application functionality such as intelligent transformation, routing and
error handling.

Introduction 1-1

Communication across the RIB is via xml messages (payloads). These payloads
describe the retail business objects (such as items, purchase orders, suppliers, and so
on) in a standard way and are governed by RIB on behalf of the Oracle Retail
applications.

RIB architecture is based on standard Java EE components and the Java Message
Service (JMS). JMS is an integral part of the Java EE (Java Enterprise Edition)
Technology stack.

The integration solution provided by the RIB system is made up of multiple Java EE
RIB applications (rib-<app>.ear) that are autonomous in their execution behavior and
deployed in a fully distributed topology. Even though they (rib-<app>.ear) are
distributed and autonomous, they communicate and coordinate messages with each
other and work to provide the final asynchronous integration solution that the
enterprise expects.

The Integration Gateway Services (IGS) component provides an integration
infrastructure for external system (3rd Party) connectivity to the Oracle Retail
Integration Bus (RIB) in the form of a tested set of Web service providers and the
configurations to connect to RIB.

The issues and considerations needed to properly deploy and configure the integration
solution within an enterprise are the subject of this guide.

1-2 Oracle Retail Integration Bus Implementation Guide

2

Standards and Specifications

RIB is designed and built on industry standard non-proprietary Java EE concepts and
standards.

Java Platform Enterprise Edition (Java EE)

Java Platform Enterprise Edition (Java EE) is an umbrella standard for Java's enterprise
computing facilities. It bundles together technologies for a complete enterprise-class
server-side development and deployment platform in java.

Java EE specification includes several other API specifications, such as JDBC, RMI,
Transaction, JMS, Web Services, XML, Persistence, mail, and others and defines how to
coordinate among them. Java EE specification also features some specifications unique
to enterprise computing. These include Enterprise JavaBeans (E]JB), servlets, portlets,
Java Server Pages (JSP), Java Server Faces (JSF) and several Web service technologies.

A Java EE application server manages transactions, security, scalability, concurrency,
pooling, and management of the EJB/Web components that are deployed to it. This
frees the developers to concentrate more on the business logic/problem of the
components rather than spending time building scalable, robust infrastructure on
which to run on.

Java EE Server

Oracle Application Server implements the Java EE specification and is the Java EE
server vendor for RIB in this release. Oracle Application Server provides many
additional services beyond the standard services required by the Java EE specification.

See the WebLogic® Application Server documentation for more information:
http://docs.oracle.com/cd/E23943_01/index.htm
http://docs.oracle.com/cd/E23943_01/wls.htm
http://download.oracle.com/docs/cd/E15523_01/index.htm.

http://download.oracle.com/docs/cd/E15523_01/wls.htm.

Java Message Service (JMS)

The Java Message Service (JMS) defines the standard for reliable Enterprise Messaging.
Enterprise messaging, also referred to as Messaging Oriented Middleware (MOM), is
universally recognized as an essential tool for building enterprise applications. By
combining Java technology with enterprise messaging, the JMS API provides a
powerful tool for solving enterprise computing problems.

Standards and Specifications 2-1

http://java.sun.com/products/jms
http://java.sun.com/products/jms

Java Management Extensions (JMX)

JMS Provider

Enterprise messaging provides a reliable, flexible service for the asynchronous
exchange of critical business data and events throughout an enterprise. The JMS API
adds to this a common API and provider framework that enables the development of
portable, message based applications in the Java programming language.

The JMS API improves programmer productivity by defining a common set of
messaging concepts and programming strategies that will be supported by all J]MS
technology-compliant messaging systems.

The JMS API is an integral part of the Java Enterprise Edition platform, and
application developers can use messaging with components using Java EE APIs (Java
EE components).

A JMS Provider is a vendor supplied implementation of the JMS interface, such as
Oracle AQ JMS. Oracle Streams AQ implements the JMS specification and is the
certified JMS provider for RIB in this release. AQ is built on top of the Oracle Database
12c Enterprise Edition.

See the Oracle® Database Enterprise Edition documentation for AQ information.

Java Management Extensions (JMX)

The RIB is a backend, headless application that does not need active business user
participation for its daily operations. When the environment is stable there is no user
intervention required for the system to keep running. For such a backend system, it is
critical that there are proper alerting and notification mechanisms built into the
application for situations when the system runs into trouble or to communicate
interesting business situations to administrators.

Java Management Extensions (JMX) is a specification to provide management and
monitoring capabilities to applications that are built using java programming
language.

The JMX is based on a three-level architecture:

s The Probe/Instrumentation level: This layer contains the probes (called MBeans)
that instrument the application resources and make the resource available through
an agent layer.

= The Agent level: The MBeanServer is at the core of J]MX infrastructure. It is a
registry/catalog of all MBeans available for management.

s The Remote Management level: This layer enables remote applications to access
the MBeanServer through Connectors and Adaptors. A connector provides full
remote access to the MBeanServer API using various RPC communication protocol
like RMI, IIOP, WS-*, and others. A JMX adapter on the other hand adapts the JMX
API and events to other standard protocol like SNMP or provide a web based GUI
(HTML/HTTP) interface to the JMX API/Events.

2-2 Oracle Retail Integration Bus Implementation Guide

Java Management Extensions (JMX)

JMX-compliant
Management
Application

?
\

T~

Server Services

=l

Server Senvices
{az MBeans)

H MBean se
Seer Java Virtual Machihe

3

JMX Architecture Diagram

In addition to the three layers presented in the architecture, JMX provides a
notification model that follows the observer observable design pattern. By using
notifications, JMX agents and MBeans can send alerts or report information to third
party management applications. Users can receive notifications as a way of being
informed of critical events or requests for attention.

Because efficient management and monitoring of RIB components are essential to the
RIB product, and also seamless integration to standard third party enterprise
management tools was a requirement, the RIB application has been fully instrumented
to be manageable by any JMX compatible management tools.

The RIB adapters can be controllable using standard JMX tools such as Oracle
Enterprise Manager. When interesting business activity happens inside RIB, the RIB
components emit alerting events to the RIB alerting framework. By default, the
alerting framework is configured to send JMX and Email alert notifications. Anyone
interested in RIB's JMX alerts can subscribe to RIB notification types using their choice
of JMX compatible management tools. JMX management tools provide a way to
configure your listener/handler in the tool to react to the incoming alert event.

Note: See JMX management tool vendor documentation on how to
add your own listeners to JMX alerts.

Standards and Specifications 2-3

Java Management Extensions (JMX)

2-4 Oracle Retail Integration Bus Implementation Guide

3

Core Concepts

The RIB is designed as an asynchronous publication and subscription messaging
integration architecture. This allows the decoupling of applications and their systems.
For example, a publishing application need not know about the subscribing
applications, other than the requirement that at least one durable subscriber must
exist. It decouples the systems operationally. Once a subscriber is registered, the RIB
persists all published messages until all subscribers have seen them.

The publishing adapter does not know, or care, how many subscribers are waiting for
the message, what types of adapters the subscribers are, what the subscribers' current
states are (running or stopped), or where the subscribers are located. Delivering the
message to all subscribing adapters is the responsibility of the RIB with the help of the
underlying JMS server.

Physically, the message must reside somewhere so that it is available until all
subscribers have processed it. The RIB uses the JMS specification for its messaging
infrastructure. The JMS accepts the message from the publisher and saves it to stable
storage, a JMS topic, until it is ready to be picked up by a subscriber. In all cases,
message information must be kept on the JMS until all subscribers have read and
processed it.

The RIB interfaces are organized by message family. Each message family contains
information specific to a related set of operations on a business entity or related
business entities. The publisher is responsible for publishing messages in response to
actions performed on these business entities in the same sequence as they occur.

Each message family has specific message payloads based on agreed upon business
elements between the Oracle Retail applications.

Key Functional Requirements

The design and architecture of the RIB infrastructure is based on two key requirements
driven by the Oracle Retail application business model.

Guaranteed Once-and-Only-Once Successful Delivery

The RIB must preserve and persist all business events (messages) until all applications
(subscribers) have looked at the message and have successfully consumed it or
decided they do not care about that event (message). In other words, RIB must deliver
to every subscriber all messages except those filtered as per a subscribing application'’s
requirements.

A business event (message) must be redelivered to the consumer application if the
business event (message) was not consumed successfully. The redelivery process is

Core Concepts 3-1

Message Family and Message Types

bound by the same rules of sequencing as normal (non-redelivered) business event
(message).

Preservation of Publication Sequence

The business event (message) must be delivered to all the subscribing applications in
the order (FIFO) the business event (messages) was published by the publishing
application.

To enable this, the publishing application defines a business object ID whose existence
informs RIB that this and all subsequent messages with the same business object ID
have to be processed in order. Business event (message) ordering (FIFO) is assured
only for messages with the same business object ID within the same message family.

Message Family and Message Types

The RIB messaging adapters and payloads are designed around the concept of a
message family.

Each RIB message belongs to a specific message family. Each message family contains
information specific to a related set of operations on a business entity or related
business entities. The publisher is responsible for publishing messages in response to
actions performed on these entities in the same sequence as they occur.

One example of a message family is the Order message family used to contain
information about purchase order events.

A message family may contain multiple message types. Each message type
encapsulates the information specific to a business entity within one or more business
events. For example, the Order message family is published for events such as Create
PO Header, Create PO Detail, Update PO Header, or Delete PO Detail.

A single business event, such as updating a purchase order, may involve multiple
business entities, such as a line item within the purchase order.

Because a single business event may involve multiple business entities, the application
may publish messages for this event from multiple message families for a single
business transaction. More than one message type within a message family may also
be created.

There are two broadly defined types of functional interfaces in the RIB (message
families): foundation data and transactional data.

Foundation Messages

After populating application tables with initial company seed data, item foundation
information is needed. Foundation messages are defined as those with payload that
carry basic product data.

This table is an example from the Oracle Retail Integration Bus Integration Guide.

Functional Area Publishing Applications Subscribing Applications
Items RMS RWMS, SIM

Item Locations RMS SIM

Locations RIB RWMS

Stores RMS RWMS, SIM

3-2 Oracle Retail Integration Bus Implementation Guide

Message Life Cycle

Functional Area Publishing Applications Subscribing Applications
Vendor RMS RWMS, SIM
Warehouses RMS RWMS, SIM

Transactional Messages

After populating application tables with initial seed data and after all required item
foundation data messages have been subscribed to, all applications are prepared to
publish and subscribe transaction data messages. Transactional messages
communicate business events involving two or more organizations within a retail
supply chain, for instance, among Oracle Retail Merchandising System (RMS), Oracle
Retail Store Inventory Management (SIM), and Oracle Retail Warehouse Management
System (RWMS), external suppliers and financial systems.

This table is an example from the Oracle Retail Integration Bus Integration Guide.

Functional Area Publishing Applications Subscribing Applications

Allocations RMS RWMS, SIM

Appointments RWMS RMS, SIM

ASN Outbound RWMS, SIM, RMS, RFM RMS, SIM, RWMS,

ASN Inbound RWMS, External, RMS RMS, SIM, RWMS
RFM

Inventory Adjustments RWMS, SIM RMS

Inventory Request SIM RMS

Receipts RWMS, SIM RMS

Purchase Order RMS, SIM RWMS, SIM

Stock Order Status RWMS, SIM RMS, SIM

Transfers RMS RWMS, SIM

RIB Message Envelope and Payloads

Whenever a publishing application adapter publishes a message, it wraps the message
in an envelope known as the RIB message envelope. The envelope is a standard
message delivery format where the message information, the data payload, is
contained within the overall delivery information. The envelope itself provides
information that the RIB uses, such as RIB hospital information and routing
information.

Note: Payloads do not support time zone formats.

Message Life Cycle

The publishing application is responsible for creating the initial message contents. The
RIB publishing adapter publishes it to the JMS Server and makes it available to any
JMS subscribers. The RIB knows what subscribers are to receive the message due to
the RIB configuration—this configuration associates a set of subscribers to each
publisher and message family combination.

Core Concepts 3-3

Message Life Cycle

For PL/SQL Applications, database tables associated with the publishing application
typically stage message information. One or more RIB publishing adapters poll the
application via a stored procedure call. For Java EE Applications, the application calls
a RIB Enterprise Java Bean (E]B) with the payload information to be published.
Similarly, SOAP Applications calls with the payload information in the request to be
published.

The message resides on a Java Message Service (JMS) immediately after publication.
The JMS topic provides stable storage for the message in case a system crash occurs
before all message subscribers receive and process it.

A fundamental RIB system requirement is that a message must be delivered to and
processed successfully exactly once by each subscriber. Furthermore, all work
performed by the subscriber and the RIB must be atomically committed or rolled back,
even if the JMS server is on a remote host. The standard way to perform this is by
using an XA compliant interface and two-phase commit protocol.

After initial publication, a message may undergo a series of transformation, filtering,
or routing operations. A RIB component that implements these operations is known as
a Transformation and Address Filter /Router (TAFR) component. TAFR is the acronym
for Transform, Address, Filter, and Route. A TAFR is completely internal to the RIB
and does not reside in either the publishing or subscribing application. The RIB
performs these intermediate transformation and routing operations on some messages
before making them available to the subscribing application.

A single TAFR may only transform a given message, only filter the message, only
route it, or combine any of the three operations.

s Transform - A message may be transformed from one message type into another,
for example, WH (warehouse) from RMS to Location for RWMS.

= Filter - A message may be filtered. Filtering can occur based on message type or
based on content.

= Route - A TAFR may route a message. For example, whenever a stock order
message is published for a warehouse with an instance of RWMS, the TAFR routes
it to the particular RWMS instance from where the stock will be fulfilled and not to
warehouses that do not stock the order's items.

TAFR operations are specific to the set of subscribers to a specific message family.
Multiple TAFRs may process a single message for a specific subscriber and different
specific TAFRs may be present for different subscribers. Different sets of TAFRs are
necessary for different message families. If all subscribers to a message can process all
messages within a message family without any TAFR operations, then no TAFR
components are needed.

Message processing continues until a subscribing adapter successfully processes the
message or determines that no subscriber needs this message.

When a subscriber gets a message to be processed, the adapter checks to see if the RIB
Hospital contains any messages associated with the same entity as the current
message. If so, then the adapter places the current message in the hospital as well. This
is to ensure messages are always processed in the proper sequence. If proper
sequencing is not maintained, the subscribing application's data can be corrupted.

If an error occurs during message processing, the subscribing adapter notes this
internally and rolls back all database work associated with the message. When the
message is re-processed (because it has yet to be processed successfully), the adapter
now recognizes this message is problematic and checks it into the hospital.

3-4 Oracle Retail Integration Bus Implementation Guide

Messaging Components

After a message is checked into the RIB Hospital, a retry adapter extracts the message
from the hospital and re-publishes it to the JMS topic for reprocessing. The message
remains in the hospital during all re-tries until the subscribing adapter successfully
processes it.

Messaging Components

The RIB is a messaging system made-up of components that are packaged and
shipped as an integration solution between the Oracle Retail applications. The
application boundary between RIB and Oracle Retail applications can be confusing at
times, so this section defines the RIB components and their responsibility and
ownership. A diagram illustrating the RIB integration message flow follows:

—— o —

Sractha T Topc i) fe——
e R LR
.

rib-tnir sar

..........

Conigxi Model

RIB Subsystem Components

This section describes the components of the RIB subsystem.

Adapters

A RIB adapter is a component that coordinates business event (message) generation
and processing with the respective Oracle Retail application interface. Each adapter in
the RIB is created to handle a specific functional interface. RIB adapters are developed
using Enterprise Java Beans (EJB) components architecture, subscribing adapters use
Message Driven Beans (MDBs) and publishing adapters use Stateless Session Beans
(SLSBs).

RIB provides four types of adapters that Oracle Retail applications can exploit to
integrate with one another. These adapter types are: publisher, subscriber, TAFR, and
hospital retry. They have been built using different technologies based on their
particular needs.

Subscriber and TAFR adapters use Message Driven Bean (MDB) technology to register
with JMS topics and receive messages for further processing.

Core Concepts 3-5

Messaging Components

Publisher and hospital retry adapters make use of the Java SE (Standard Edition) timer
facility to schedule repetitive events that trigger calls to Stateless Session Beans
(SLSBs) to query application tables for messages to publish to the JMS server.

As stated in the introduction, a fifth type of adapter exists for publishing messages in a
pushing fashion. The Oracle Retail applications invoke this adapter at will for
publishing messages.

These adapters have not been considered part of the scope of this technical document
in regard to providing a mechanism for starting and stopping them.

Due to the variety of technologies used by the adapters, the goal of this technical
design has been to isolate users from these differences and provide them with a
common management interface that can be used to control the state of the adapters.
During the last few years, the Java Management Extensions (JMX) specification has
become a well known standard that defines the management layer for enterprise Java
applications. JMX defines standard methodologies for declaring enterprise application
components as manageable resources that can be exposed in a consistent way such
that any JMX compliant management application can access and provide means for
control.

JMS Domains, Destinations, Subscriptions

JMS defines two types of messaging domains: point-to-point and publish/subscribe.
RIB uses publish/subscribe types of messaging domains for all its communication.
Publish/subscribe is a one-to-many type of message distribution model where one
source application en-queues the message and many destination applications can
de-queue the same message and process independently of the other peer applications.
In publish/subscribe the destinations are known as topics, the en-queue application is
known as publisher, and the de-queue is known as subscriber. Unlike point-to-point,
in publish/subscribe the publisher and subscriber are totally ignorant of each other
and do not and should not know about each other’s existence. The JMS Topics retain
the messages only as long as it takes to distribute them to current active (running)
subscribers. There is also a timing dependency between publishers and subscribers.

A client that subscribes to a topic can consume only messages published after the
client has created a subscription, and the subscriber must continue to be active in order
for it to consume messages. The JMS specification relaxes this timing dependency to
some extent by allowing clients to create durable subscriptions. By creating durable
subscriptions the JMS server will continue to hold the messages for all registered
subscribers for that topic until the subscriber consumes the message or deletes the
subscription.

There are two types of subscribers, non-durable and durable subscribers. The RIB uses
only durable subscribers which allow the Oracle Retail edge applications to be in up or
down state independently but still not lose any messages and catch up when the
application comes back up. Every subscribing RIB adapter registers its durable
subscriber with a subscription name that contains its rib-<app> application name and
the adapter name in it.

RIB defines logical grouping of retail specific business objects (BO) and business

functions in a concept called message family. For every message family there is a
corresponding JMS topic. These JMS topics are used as communication pipelines
between the source and destination Oracle Retail applications for exchanging the
business objects.

The list of JMS topics used by RIB components is detailed in the Reports section of the
Oracle Retail Integration Bus Integration Guide.

3-6 Oracle Retail Integration Bus Implementation Guide

Messaging Components

JMS Message Selector

A key aspect of the JMS usage that the RIB relies on is the attachment of message
properties to published messages and the use of selectors by message subscribers.
Message properties are used to convey information about the message outside of the
actual message data to establish a logical channel for messages.

JMS message selectors are used by the RIB to filter the messages that each subscriber
picks up. In other words, using the message properties, selectors act as a filter to weed
out messages a subscriber should not process.

The message property set and used by the RIB messages is called threadValue. The
thread value is associated with a logical channel of a message stream. All messages for
a specific family with a specific business object ID always contain the same
threadValue property. This, combined with the standard first in, first out (FIFO)
message ordering on the topic, is integral to message sequencing. Messages with
different thread Value properties are not guaranteed to be processed in the same
relative order as publishing.

Messages published without J]MS Message Property present will not be picked up by
the standard subscribing RIB adapters.

Pseudo code for message selector:

(
(
(appName is not null) AND
(appName == $APP_NAME)
) AND
(
(retryLocation is not null) AND
(retryLocation LIKE S$ADP_CLASS_DEF)
)
) OR
(
(
(appName is null) OR
(appName != SAPP_NAME)
) AND

(retryLocation is null) OR
(retryLocation LIKE $ADP_CLASS_DEF)

)
) AND
(threadvalue == $ADP_INSTANCE_NUMBER)

Additional RIB JMS Message Properties

Every message published by the rib-<app> applications includes a number of J]MS
user defined header properties. In the current release, these properties are only set, not
used by any RIB components. In the future, these properties will be used for intelligent
performance enhancement and optimization and for traceability and auditability of
RIB messages.

The message properties are as follows:
s Property Name: appName

Type: java.lang.String

Required Property: false

Example: appName=rib-rms

Core Concepts 3-7

Messaging Components

Description: The appName property contains the rib-<app> application name that
published this particular message.

= Property Name: adapterInstance
Type: java.lang.String
Required Property: false
Example: adapterInstance=Item_pub_1

Description: The adapterInstance property contains the rib-<app> adapter
instance name that published this particular message.

= Property Name: family
Type: java.lang.String
Required Property: false
Example: family=Item

Description: The family property contains the name of the RIB family name to
which the message belongs.

= Property Name: needMessageOrderPreservation
Type: boolean
Required Property: false
Example: needMessageOrderPreservation=true

Description: This property will have a value of true if any ribMessage node within
the RibMessages xml has a message that has businessObjectld set. This property
will allow us to take advantage of the fact that now we know which messages
need message order preserving at JMS header level (without opening the
message). In the future, we will be able to take advantage of that information,
make our processing parallel, and get better throughput without losing message
sequencing.

» Property Name: topic
Type: java.lang.String
Required Property: false
Example: topic=etltem

Description: This topic property contains the RIB topic name that this particular
message is published to or subscribed from.

s Property Name: ribKernelVersion
Type: java.lang.String
Required Property: false
Example: ribKernelVersion=19.0

Description: The system determines the rib kernel jar version number at runtime
and includes its value in this JMS property.

s Property Name: ribFuncArtifactVersion
Type: java.lang.String
Required Property: false
Example: ribFuncArtifactVersion=19.0

3-8 Oracle Retail Integration Bus Implementation Guide

Messaging Components

Description: This is a place holder for future enhancement. The idea is the system
will somehow determine the runtime payload version and include that
information in the message for better compatibility management. This property
will be enhanced in a future release.

= Property Name: ribMessageCount
Type: int
Required Property: false
Example: ribMessageCount=12

Description: This property contains the number of ribMessage nodes there are in a
RibMessages xml message. This value gives us some indication of message
aggregation in play. It might be used in the future to better optimize message flow
paths based on the size/number of the messages.

s Property Name: uuid
Type: java.lang.String
Required Property: false
Example: uuid=116cfabd-8949-4f93-bb61-aaa88e168£30

Description: This property contains a universally unique identifier for every
message. This unique identifier will provide better traceability of a message within
the JMS system. This property complements the ribMessagelD xml element that is
there to trace messages within the RIB logs.

Integration Gateway Services (IGS)

The Integration Gateway Services (IGS) provides an integration infrastructure for
external (third party) connectivity to the Oracle Retail Integration Bus (RIB) in the
form of a tested set of Web service providers and the configurations to connect to RIB.

Integration Gateway Services are designed to ease the integration to the RIB interfaces
and RIB payloads. Traditionally, this required custom RIB adapters to create and
publish RIB payloads wrapped in RIB Messages envelopes to the RIB JMS topics. The
IGS provides the integration to these RIB interfaces through standard
request/response Web services using only the standard XSD based RIB message
payloads.

IGS Interfaces

There are 19 RIB Message Family interfaces included in the IGS. They are the interfaces
most commonly used for custom integration to legacy systems. A Web service
corresponds to each of the selected Message Families. Each service exposes the
message types supported by the RIB Message Family.

Table 3-1 IGS Interfaces

Functional Area Message Types

Financials s Chart of Account (GLCOA)

s Currency Rates

= Freight Terms

= Payment Terms

Core Concepts 3-9

Messaging Components

Table 3-1 (Cont.) IGS Interfaces

Functional Area

Message Types

Foundation Data

Item

Item Location
Store

Vendor

Transactional - External

Allocations
Cost Changes
Purchase Order

Transfers (Stock Orders)

Transactional - Internal

ASN Inbound
ASN Outbound
FulfillOrder

Inventory Adjustments

Inventory Request

Receiving (Appointments, Receipts)

Return to Vendor

Integration to IGS

The customer or integrator creates Web service clients from the IGS WSDLs, using
tools or technology appropriate to the retailer's organization. The message payloads
are the standard XSDs that ship with the RIB Functional Artifacts. The business logic
behind the client must be written to match the RIB Integration and the Oracle Retail
Application API rules. These are the same rules that apply to any GA or custom
adapter, as included in RIB documentation and other Oracle applications guides.

The IGS Web Service infrastructure has been designed to support the RIB feature of
multi-channel publication, through the Business Object ID. It also supports message
routing through RIB TAFRs, where the Message Family supports it. Additional XSDs
have been added to support these requirements.

(RIBNGS

ETH Basus
Akt wed

| |
| |
| |
I B i wom o T i |
N- -
| |
| ' o

G |
4
RIN Marasga wed | —
2]

1

105 Sub Adepir b _'J

3-10 Oracle Retail Integration Bus Implementation Guide

Owaicks Retad
Appicatns |
| PR, Bl oAb

P ===

Simple Message Flow

RERELIGS HOTES: LEGEHD
Predust Cormain 1 T
i G Chninss . . Sorprehisere
I1cgaton Qe Comow LA Topa Sz idad oL
& |Bsstem: mignag |serece mndmn
Is il
g Lot oups [, sy e
= i a0 4 . [[Eomzonen st ul Bt e
Lafe TR | - TR R = 1 W
= e) RCEU - A i
14 = — = G-
= - I 1
| oracs ERRrLS o b ORI e Fle e ASTONDOOUS
= - _ _Hﬂ]l'" =it g Haymd

£ Oracie Cregodakon

IGS Deployment Considerations

There are additional deployment options that must be considered if the IGS is
required.

The RIB Integration Gateway Service (IGS) component requires Oracle® WebLogic
Server 12c Release(12.2.1.3.0).

In addition to the RIB considerations during implementation, coordination with the
Application Server Administration team also is required to determine the physical and
logical placement of the RIB IGS component within the WebLogic Server deployment.

IGS and WebLogic Server (WLS) Clustering The core RIB components do not support
deployment to an active-active cluster. However, the IGS can be deployed to an
active-active Oracle WebLogic cluster.

See the WebLogic® Server documentation for more information:
http://download.oracle.com/docs/cd/E15523_01/index.htm.
http://download.oracle.com/docs/cd/E15523_01/wls.htm.

Simple Message Flow
The typical lifecycle of a message through the RIB is as follows:

1. The publishing adapter creates the message. The event that triggers the message
creation may be a polling operation in case of PL/SQL applications or a
synchronous invoke in case of Java EE applications or a request in case of SOAP
application. The message is published to a predetermined JMS topic.

2. The message is now available for all registered subscribers to the JMS topic for
pick up. Subscription is based on the message family.

3. Once a subscriber gets the message, it is free to process that message according to
its own rules. In the case of a transformer adapter, the adapter can open the
message, modify its contents, and then publish the modified message to a new
topic. The source topic and destination topic that a TAFR uses must always be
distinct/different topics. There may be new subscribers to the modified message,
and the scenario is repeated for each of these subscribers.

4. When each subscriber has finished (commit) processing a message, the JMS server
updates the state of the message to reflect that it has been processed by this
subscriber.

5. The JMS Server deletes the messages on the topic after delivering it to all the
registered subscribers.

Two types of applications require this data and subscribe to it. One type of subscribing
application requires a certain transformation be applied to the data, but the other type
of subscriber can process the message without any transformations.

Core Concepts 3-11

http://java.sun.com/products/jms
http://java.sun.com/products/jms

The RIB Hospital

The RIB Hospital

The RIB Hospital is a collective term for a set of Java Classes and database tables
whose purpose is to provide a mechanism to handle system and business related
errors while meeting the fundamental RIB requirements:

= Guaranteed once-and-only-once successful delivery.
= Preservation of publication sequence (even in case of failures).

When a message is processed, the adapter checks to see if the RIB Hospital contains
any messages associated with the same businessObjectld as the current message. If so,
then the adapter places the current message in the hospital as well. This is to ensure
messages are always processed in the proper sequence. If proper sequencing is not
maintained, then the subscribing application's data can get corrupted.

If an error occurs during message processing, the subscribing adapter notes this
internally and rolls back all work associated with the message. When the message is
re-processed (since it is yet to be processed successfully), the adapter now recognizes
this message is problematic and checks it into the hospital.

For Publication, there are some RMS publishers that return an 'H' status to denote a
problem creating a new message for a specific business object. This status may be due
to database locks being held by on-line users of an Oracle Forms application or it
could also be due to some data incompatibility found in the GETNXT() procedure.
Whenever a publisher recognizes that a message for a business object cannot be
published due to one of these conditions, the message must go into the RIB Hospital.

After a message is checked into the RIB Hospital, a retry adapter extracts the message
from the hospital and tries to re-publish it to the integration bus.

RIB Hospital Dependency Check

The RIB Hospital dependency check logic assumes that each message family has a
single unique businessObjectld for all business object entities its messages are
associated with. This businessObjectld must be the same for the same business entity
across all message types within the message family. If any message for a specific
business entity is placed into the RIB Hospital, then the RIB Hospital dependency
check logic automatically inserts any subsequent messages for the same business
object. This is to preserve the message sequencing and guaranteed exactly once
successful message processing. Otherwise, multiple update messages for a business
object may be processed in an incorrect order and create incompatibilities between
applications.

If the businessObjectid is not set, then there is no dependency check. Not all message
families set the businessObjectld or it is not set on all message types. See the Oracle
Retail application documentation (for example, "Message Publication and Subscription
Designs" in the Oracle Retail Merchandising System Operations Guide Volume 2).

RIB Hospital Insert

In an event of failure during message subscription, the error is flagged within the RIB
Hospital software, resulting in rollback of the work done in the retail application, the
adapter returns failure so that the database transaction is rolled back as well, and the
message is kept on the integration bus topic. This is because subscribing adapters are
executed within the context of a distributed transaction, using the XA two-phase
commit protocol. This transaction is controlled by the Java EE Application Server.
Immediately after the roll back, JMS re-delivers the message back to the subscribing
adapter and this time the RIB Hospital software detects the previously flagged

3-12 Oracle Retail Integration Bus Implementation Guide

The RIB Hospital

message and inserts the message in to the RIB Hospital tables and message is removed
from the JMS topic.

When the initial failure occurs while processing the message, the error is flagged
within the RIB Hospital software, the adapter returns failure so that the database
transaction is rolled back, and the message is kept on the integration bus topic.

Note: The XA interface is a standard protocol between a transaction
manager and a database or resource manager. Note that both the JMS
topic connection and the database connection must support the XA
protocol. For more information regarding the XA standard, see the
URL http://www.opengroup.ord.

RIB Hospital Tables
The RIB Hospital tables are:
= RIB_MESSAGE - contains the message payload, all single-field envelope

information, and a concatenated string made from <id> tags. It also contains a
unique hospital ID identifying this record within the hospital.

s RIB MESSAGE_FAILURE - contains all failure information for each time the
message was processed.

s RIB_MESSAGE_ROUTING_INFO - contains all of the routing element information
found in the message envelope.

» RIB_MESSAGE_HOSPITAL_REEF - contains all of the hospital reference
information found in the message envelope.

A database sequence, RIB_MESSAGE_SEQ), is used to maintain a unique message
number associated with each message placed into the RIB Hospital.

RIB_MESSAGE
PK | MESSAGE NUM

11 | ADAPTER_CLASS_LOCATION
11 | ADAPTER_INSTANCE_NUMBER
11 |FAMILY

TYPE

11 |ID

RIB_MESSAGE_ID
PUBLISH_TIME

IN_QUEUE
MESSAGE_DATA
ATTEMPT_COUNT
MAX_ATTEMPTS
NEXT_ATTEMPT_TIME
DELETE_PENDING
TOPIC_NAME
THREAD_VALUE

11 |JMS_QUEUE_ID
CUSTOM_FLAG
CUSTOM_DATA
REASON_CODE

A

v
A

RIB_MESSAGE_FAILURE RIB_MESSAGE_HOSPITAL_REF RIB_MESSAGE_ROUTING_INFO

PK,FK1 | MESSAGE NUM PKFK1 | MESSAGE NUM PK,FK1 | MESSAGE NUM

PK SEQ NUMBER PK SEQ NUMBER PK SEQ NUMBER
TIME HOSPITAL_REF NAME
ADAPTER_CLASS_LOCATION ADAPTER_CLASS_LOCATION VALUE
ADAPTER_INSTANGE_NUMBER ADAPTER_INSTANCE_NUMBER DETAIL1_NAME
DESCRIPTION MESSAGE_FAMILY DETAIL1_VALUE
ERROR_TYPE NEW_REASON_CODE DETAILZ_NAME
ERROR_CODE OLD_REASON_CODE DETAIL2_VALUE

These tables will have been created during the database portion of the Oracle Retail
application installation (for example, RWMS, SIM, RPM, AIP, RFM, OMS, or RMS).

Core Concepts 3-13

http://www.opengroup.org
http://www.opengroup.org
http://www.opengroup.org

The RIB Hospital

The RIB Hospital tables are internal system tables that maintain the RIB runtime state
of the system. The entries in these tables must not be manipulated by non RIB tools
when the RIB is running.

RIB Hospital Retry

After a message is inserted into the RIB Hospital, the hospital retry adapter is used to
re-post the message to the JMS in order to retry its processing. The assumption is that
the error is a transitory one; records locked or there is an external dependency that has
not been met. The number of times a message is retried is configurable.

The hospital retry is responsible for maintaining state information for hospital records
or what has happened to the record or message information. Each time the message is
reprocessed, a record is kept of the event along with the results. The design is to
provide a means to halt processing for messages that cause errors while allowing
continued processing for the good messages.

One element of this information is whether the message has been queued to the JMS
topic for re-try processing. So manually deleting messages from the hospital database
using SQL directly may produce severe processing problems. Also, deleting messages
directly from the JMS provider may result in a message that is never retried again, as
the logic in the retry assumes the message is queued within the JMS.

There are three kinds of hospital retry adapters:
= Sub Retry Adapter
= JMS Retry Adapter
s Pub Retry Adapter

All subscriber side retrying of messages are handled by the Sub Retry Adapter. The
Sub Retry Adapter looks at all messages with reason code SUB, then filters and
identifies the messages that are ready to be reprocessed, keeping message ordering in
mind.

Oracle Retail applications are unaware that the integrations of the business data is
happening through a JMS server. RIB abstracts the fact it is using a JMS server from the
retail applications. When the JMS server is down or RIB has some problem publishing
to the JMS server, RIB will not rollback the transaction as long as it is a recoverable
problem. In such situation all messages are inserted to the RIB Hospital with a reason
code of JMS and publications continues on. The JMS Retry Adapter retries all
messages with reason code of JMS at a later time.

All messages with reason code of PUB are retried by the Pub Retry Adapter. RMS is
the only retail application that needs the Pub Retry Adapter.

PUB Retry Adapter
The following diagrams illustrate how the PUB Retry Adapter works.

3-14 Oracle Retail Integration Bus Implementation Guide

The RIB Hospital

PUB_RETRY with
STATUS_CODE 'S’

PUB_RETRY with
STATUS_CODE ‘I

RIB PUB_RETRY
Adapter Processing

Core Concepts 3-15

The RIB Hospital

PUB_RETRY with
STATUS_CODE 'N'

PUB_RETRY with
STATUS_CODE 'H'

RIB PUB_RETRY
Adapter Processing

3-16 Oracle Retail Integration Bus Implementation Guide

The RIB Hospital

N

rib-<app=

Calls GETNEXT pkg

(GetNext EJB

TATUS CODE *H” raturned—pl\‘_

STATUS CODE “E” returned > adapter Insers Message to
I
llfhuts Do _/,l
PUB_RETRY with Gets the message

STATUS CODE ‘E' or any
other invalid codes.

Hospital Attempt (Retry) Count

When the message first comes through the subscriber, if there is no businessObjectid,
then there is no dependency check performed. If the message cannot be processed, it is
then inserted into the hospital with an attempt_count = 1.

A message that comes through the subscriber, that has a businessObjectid, a
dependency check is performed. If there is no dependency and the message cannot be
processed, it is then inserted into the hospital with an attempt_count = 1.

A message that comes through the subscriber that does match the ID and family of
another message in the hospital is known to be dependent, so it goes to the hospital
immediately, with an attempt_count = 0.

Exception to this rib-tafr app, in case of rib-tafr attempt_count is 1, even if the message
is inserted into the hospital as a dependent message because tafr adapters work with
two topics and message would already be subscribed once by the tafr, therefore it
always has attempt_count=1.

JMS Delivery Count

JMSXDeliveryCount is a message property set by AQ JMS. This property is checked to
see if the message is being redelivered by the JMS. If the count MAX_REDELIVERY _
THRESHOLD (set to 2) is reached, the RIB subscribers assume that the message is
being re-delivered; the message will be determined as a poison message. The message
is written to the file system (at the same location where application log files are
written), and the adapter is shut down in such scenarios. An administrator must
decide how this message will be handled.

Core Concepts 3-17

The RIB Hospital

3-18 Oracle Retail Integration Bus Implementation Guide

4

Oracle Retail Application APIs

This chapter describes Oracle Retail Application APIs.

PL/SQL Stored Procedure APIs

Each PL/SQL based application uses a Message Family Manager (MFM) specific API
for publishing all messages within a specific message family. This API is the interface
to a stored procedure package and wrappers the staging table and additional business
logic surrounding the message publication.

The RIB Publishing Adapter polls the API by calling a routine in the MFM called
GETNXT(). The MFM "GETNXT()" PL/SQL stored procedure may contain simple or
complex logic that is specific to the message types published. For example, a simple
Create Vendor message may involve merely selecting and then deleting a single record
from the vendor staging table. On the other hand, a Create Purchase Order message
requires fairly complex logic to create because of the business process dependencies.
Many changes may be made to a PO before it is approved.

The RIB Subscribing Adapter invokes the API by calling a routine in the MFM called
CONSUMEY(). The CONSUME() API consumes the subscribed messages. Depending
on the message family, it takes the message, message type, and other information
required as inputs to process the message. It returns a status code of 'S' for Success and
'E' for Error after processing. If the status 'E' is returned, the error message is also
displayed.

The RIB Pub Hospital Retry Adapter invokes the API by calling a routine in the MFM
called PUB_RETRY(). All those messages for which GETNXT() returns a status code
'H' are sent to Error Hospital with reason code PUB. These messages are retried by the
PUB Retry Adapter by calling routine PUB_RETRY(). It returns a status code 'S’ for
Success, 'H' for Hospital, T for Keep Calling till the status code 'S’ is returned, 'N' for
No message, and 'E' for Error. If 'E' is returned, the pub retry adapter is shutdown.

Oracle CLOB APIs

The main facet of this API involves the use of Oracle CLOBs (Character Large Object
Binaries) as the means to pass information to and from an Oracle stored procedure.
The stored procedure is responsible for parsing or building the message payload.

There are only a few of this type remaining in RMS.

APIs using CLOBs have internal triggers that are fired when a specific database table
is modified. The trigger retrieves all of pertinent information to create a specific type of
message (XML payload) and inserts it into a staging table using an application specific
Message Family Manager (MFM) API. The payload is contained in an Oracle

Oracle Retail Application APIs 4-1

PL/SQL Stored Procedure APls

Character Large Object Binary (CLOB). The staging table that holds the payload data
must also maintain the following;:

s The order that messages are created
s The CLOB containing the "payload" XML
= Any routing or filtering key values

= The message type associated with the business event that created the message. The
message type is specific to the message family and a single business event may
produce multiple messages of differing types within different families.

RIB_XML and RIB_SXW Database Packages

These PL/SQL packages contain utilities to make the generation and parsing of XML
documents easier. It is based on Oracle's XDK, and is designed to support CLOB
application-specific APIs that read and write XML messages.

Oracle Object APIs

These application interfaces use Oracle Objects to pass information to and from the
stored procedure. Each RIB Object corresponds to the XSD that defines the RIB
Message payloads for that message family. This is the predominant type of PL/SQL
API used in Oracle Retail integration via RIB.

When a message is ready for publication, the Message Family Manager GETNXT/()
Stored Procedure examines its staging tables and creates the appropriate RIB Object
for publication. In many cases, these staging tables contain columns that are
themselves declared a specific type of RIB Object. Once the complete RIB Object is
ready, the GETNXT() Stored Procedure returns this (RIB Object) to the calling RIB
Adapter, which then converts the RIB Object into an equivalent XML string.

When a subscribing adapter gets a message from the JMS topic it constructs the Oracle
Object by parsing the incoming payload xml. The newly created Oracle Object is
passed in to the CONSUME() stored procedure to process the message.

RIB Related Database Tables

PL/SQL stored procedures use three tables to refine their behavior: RIB_SETTINGS,
RIB_TYPE_SETTINGS, and RIB_OPTIONS. Not all applications use these.

The RIB_SETTINGS table defines, on a per message family basis:

s The number of channels to use when publishing (see the Multi-channel section in
the Oracle Retail Integration Bus Operations Guide).

s The maximum number of details to publish within a create, update, or delete
message. Oracle Retail applications typically do not have a limit to the number of
details a specific business object can have. So a purchase order may be created
containing tens of thousands of detail lines, each line a specific item/location
combination. A single PO Create message containing 30,000 or so lines require a
vast amount of resident memory to parse. This column limits the PO Create and
subsequent PO Detail Add messages to a set number of details.

The RIB_TYPE_SETTINGS table is used internally by the application.
The RIB_OPTIONS table is used by the CLOB APIs for the creation of XML.

4-2 Oracle Retail Integration Bus Implementation Guide

Oracle Retail Java EE APIs

Detail Architecture - PL/SQL Apps

RIB Detail Architecture — PL/SQL Apps

Java EE Server

JSP/Serviet MBean Server EJB Container JCA Container
Container
ib p>.ear
GetNext SLSB
- 46
Retail PL/SQL App rib-admin-gui
Pub Error Hosp M,
[o] | =
PL/SQL API (GETNXT) :) j‘
IR T [Pubtisner stsp |- Topica |-+ [e
Poll Publisher Timer 2 Rib Config
MBean Subscriber MDB 1 -2—— Sub Topic 1 l IMS-Server
B I
PLISQL API (CONSUME) [z ‘
o ’7|Subscribcf MDB 2 | |Sub Topic 2 }—;Afb() Topic 2)
Hosp Retry Timer |
Sub Error Hosp Mgr
S [s
»| Hosp Retry SLSB
Rib Log Mgr o
MBean
Retry Error Hosp Mgr

JMX Management
Client

Pub(S) - Sub(d/) - Relry()———————————

Oracle Retail Java EE APIs

These interfaces to the RIB are via Message Driven Bean (MDB) for subscribers and by
Stateless Session Bean (SLSB) to publish messages to the JMS. This architecture uses
Payload Java Beans to communicate event information from the RIB code to the
application messaging processing logic.

The internal architecture of RIB is very similar between Oracle Retail PL/SQL
applications and Oracle Retail Java EE applications. The only significant difference is
in the publishing adapter types. For PL/SQL Retail applications RIB keeps on polling
the stored procedure every few seconds to find out if there is any work. When the
stored procedure returns some data (that is, when there is some work), RIB goes and
does the work. In Oracle Retail Java EE applications RIB does not do any polling. The
roles are reversed where the Oracle Retail application requests RIB to publish a
message. Thus, there are two types of publishing adapters in RIB depending on the
connecting Oracle Retail application type. The Java EE application uses request-driven
publishers and the PL/SQL application uses timer-driven publishers.

Oracle Retail Application APIs 4-3

Oracle Retail SOAP APIs

Detail Architecture Java EE Apps

RIB Detail Architecture — JavaEE Apps

Java EE Server

Container

JSP/Serviet ‘ ‘ MBean Server EJB Container JCA Container

b: p>.ear

Rib Timer Adapter
Retail JavaEE App rib-admin-gui ’7

r
TopicConnection
24 Factory
Rib Mdb Adapter —
1 pi
MBeans Pub Error Hosp Mgr SV_
rib-private-app-plugin 1 - L]
J E ()
MBean % Subscriber MDB 1 }« —«I Sub Topic 1 I IMS Server
Injector]
229 [subseriberMpB2 | || [sub Topie2 }_4.4f>() Topic 2)
Hosp Retry Timer |
Sub Error Hosp Mgr
Hosp Retry Timer 2. Topic3
Hosp Retry SLSB
Rib Log Mgr H
MBean
Retry Error Hosp Mgr
| ‘] JMX Management
Error E i
Hospital b(3) - Sub(4/9) - 3 | Client
Tables

Oracle Retail SOAP APIs

The interfaces to the RIB are via the Injector Service.

API Return Status Codes

Below are lists of API return status codes.

PL/SQL GETNEXT Return Codes

S - Success

N - No message
H - Hospital

E - Error

PUB_RETRY Return Codes

S - Success

N - No message
H - Hospital

E - Error

I - Keep calling

CONSUME Return Code

S - Success

E - Error

4-4 Oracle Retail Integration Bus Implementation Guide

O

Pre-iImplementation Considerations

Before the RIB is installed into an enterprise, there are many factors that need to be
considered. Planning and addressing each of the factors will avoid having to re-install
or re-architect because of performance or operational problems.

The process of RIB implementation requires the creation or modification of a retailer's
Enterprise Integration Architecture. Typically, retailers will already have an integration
strategy, plan or architecture and products in place to integrate their current systems.

The deployment of the RIB is always a portion of the deployment of the Oracle Retail
applications, almost always with RMS. Because the implementation of RMS is a long
cycle project, and always involves data conversions and integration into a retailer’s
existing infrastructure, the RIB implementation planning is strategic to that effort.

RIB Software Lifecycle Management

Software applications, after being made generally available (GA), have a well defined
lifecycle process. The implementer must manage and perform tasks in these phases:

= Acquire the software components.

» Prepare the environment

= Assemble the application

= Deploy and start the application

s Perform day-to-day monitoring to make sure the application is running properly

= Apply code fixes to the application

Pre-Implementation Considerations 5-1

Centralized Configuration and Management

RIB Software Life Cycle

Preparation Phase

Dewnload RIB Kemel and un.armcmats your RIB
workspace(rib-home).

area within rib-home. Do not untar.

Dawnload All RIB Pak (Ers Lu dcwnlvads staging area
within rib-home. Do not untar,

Step 2
Download RIB func artfact tar to downloads staging

r—\/—\r—\

version compatibifity and extract the downloaded files
1o the correct locations in the application assembly
area.

Step4
Run check-version-and-unpack utiity. It will check
E A

Application Assembly Phase

tep

Define your RIB asmuyman architecture by editing

rib-deployment-env-info.xml under deployment-home
directory tree.

Step 6
Run the rib-app-compller (o generate all deployment
descriptor and build the ib-app> ears using the
correct classpath and jars from rib-application-
assembly-info xml.

(Deplnyment Phase

Step7
Configure your JUS S by running tha rib-app-
deployer utilty.

Step8
RNioe vt dsploy the RIB functicnal
artifact

Step 9
Run the rib- appdep\wer lur each rit-<app=.ear in

(e

Operations Phase

troller utiity under op
directory tree

lep
Manage your Error Ha':p: al using RIHA toal

Step 12
Manage and Monitar ycur e system using

e .

(Mnimenance Phase

Step 13
Apply a defect fix o your env by executing check-
version-and-apply-defect-fix utlity

Step
Manage your runtime \r\[aqna fon adapters using the J

Step 14
Get your system change history and Inventory repart
by executing Inventory-management utiity.

RIB supports and follows the RIB Software Lifecycle Management, a well-defined
process life cycle that has implemented specific tools and functionality for each of
these phases.

Preparation Phase—In this phase, all relevant components are downloaded,
extracted, configured, and version compatibility checks are done.

Application Assembly Phase—In this phase, site specific configuration changes are
made and all the relevant rib-<app>.ears are generated.

Deployment Phase—In this phase, using the rib-<app>.ears created in the
previous step and the site specific information present in a global configuration
file, the rib-<app> .ears are deployed to the application server instances.

Operations Phase—In this phase, day-to-day operations of the rib-<app>
applications are performed.

Maintenance Phase—In this phase, code fixes, patching, configuration changes
and maintenance of the RIB is performed.

Centralized Configuration and Management

Another key concept in the design of RIB is that all configuration and management is
done from a single centralized location using specific RIB provided tools. The RIB is
built on a completely de-centralized model. However, to ensure consistency and

5-2 Oracle Retail Integration Bus Implementation Guide

Pre-implementation Considerations for Multibyte Deployments

compatibility within an enterprise deployment, a centralized management and
configuration model has been designed.

The RIB provides a RIB installer, consistent with all of the Oracle Retail applications, in
addition to a command line set of tools that are used at installation, assembly and
deployment time to create the Oracle Retail application specific integration.
Collectively these command line tools are called the rib-app-builder and provide
functionality to support the RIB Software Life Cycle.

Physical Location Considerations

The Oracle Retail Merchandising System (RMS) is the most important core business
application from the suite of Oracle Retail Product offerings. RMS provides most of the
retail business functionality that Oracle Retail offers its customers. In other words RMS
is the central hub of oracle retail applications. Since RMS is the central hub of retail
information/data and most information/data flows outward from RMS to other edge
retail applications through RIB, the decision on where to physically /logically locate
RIB is very important and will have direct impact on functioning of your enterprise.

It is recommend to keep the RIB's JMS server logically (not physically) close to the
RMS database server as 80% of the data flowing through RIB will interact with RMS
database server. Normally RMS up or down status defines your overall enterprise
retail business status and so keeping your integration infrastructure status in sync with
RMS is beneficial.

TAFR adapters use RIB Hospital functionality. In order to avoid situations where
entire integration can be down just because the TAFR RIB Hospital database is down,
it is strategic and beneficial to put the TAFR RIB Hospital tables in the same database
instance as the RMS database instance. Obviously it is required to separate the RMS
RIB Hospital tables and the TAFR RIB Hospital tables by installing them in their own
respective database schemas.

The argument above can be extended to the rib-tafr.ear application and rib-rms.ear
application, and so it is recommended to co-locate rib-rms.ear and rib-tafr.ear as much
as possible.

RWMS and SIM are edge retail applications which might be running closer to your
physical warehouse location or your physical store management location. It is
recommended collocate rib-sim.ear near SIM application and rib-rwms.ear near
RWMS application.

The integration message flow is centrally managed in this release. The
rib-func-artifact.war web application determines which messages go where between
the rib adapters across all rib-<app> applications. At runtime, the rib-<app>.ear needs
access to the central message flow repository available in rib-func-artifact.war.
Therefore, rib-func-artifact.war must be deployed in a central location where all
rib-<app>.ears have access to it at runtime.

The RIB is a central office enterprise integration solution; it is not designed to work
optimally on a low (non LAN) bandwidth network. Distribute the rib-<app>.ear
applications in such a way where you can avoid lots of network hops, any network
protocol bridges, and any communication over a WAN.

Pre-implementation Considerations for Multibyte Deployments

If the RIB is deployed into an environment where multibyte characters are used in the
message data, improper database setup can lead to error messages indicating that
insert values are too long.

Pre-Implementation Considerations 5-3

Error Hospital Size

There are several database settings that can affect the behavior of the processing
messages that contain multi-byte characters. Some are set during the creation of the
instance, and others are configurable. The settings to pay attention to are NLS_
CHARACTERSET, NLS_LANG, NLS_LENGTH_SEMANTICS. The interactions and
considerations are beyond the scope of the RIB documentation and should be
discussed with the database administration team prior to installation.

The BYTE vs. CHAR setting is especially important. If it is not set up correctly, errors
can result, indicating the value being inserted is too long for the field. The following is
an example of an insert error:

Internal Exception: java.sql.SQLException: ORA-01461: can bind a LONG value only
for insert into a LONG column.

Error Hospital Size

The RIB error hospital is designed to handle systemic and business related error
conditions while preserving publication sequence. The error hospital is not designed
to stage large volumes of data for lengthy time periods. When sizing the Error
Hospitals as part of any topology suggested in this document, keep in mind that they
can suddenly grow to many times what will be considered normal. This condition is
called flooding the hospital and one of the situations that can have catastrophic effect
on the run-time performance of the RIB flows that are associated with that hospital.

The tuning and performance of the Hospital and associated retry components is not
designed to support large numbers of messages; aka flooding. Flooding is difficult to
define, but generally speaking when the number of messages in the hospital is
measured in the 5 figures (10,000) and up, operational impacts will occur and process
and procedures should be developed to stop the flow(s) and deal immediately with
the source of the issue causing the messages to go to the hospital. During the
development and test phases, a customer should consider the possibility of flooding to
occur and to have predetermined processes in-place before production. When the
problem hits is not the time to be trying to find answers, the out-come of a hospital
flood situation is often a business-down situation.

JMS Server Considerations

Retail business generates huge volume of transactions that are time sensitive in nature.
For the business to be agile and react quickly, RIB has to transmit the business events
over the JMS server very quickly. The RIB depends upon the underlying JMS server for
its performance, robustness, and reliability. Therefore, your retail business’
performance and reliability is directly dependent on how robust the JMS server is and
how much CPU, memory, network and other system resources are available to it. It is
critical to provide adequate hardware resource to the JMS server in order for it to be
able to meet your performance requirements.

It is not recommended to locate the JMS server and the RIB application server on the
same machine. RIB tools automatically configure the JMS server to meets RIB's
required configuration. Do not modify the RIB JMS server configuration unless it is
advised by RIB documentations. RIB provides tools to monitor the RIB JMS server and
only those recommended tools must be used for your daily operations.

It is important to consider the sizing, either file system space or database table space,
when planning the deployment of the JMS Provider to a host. It is a very common
operational use case for one of the Oracle Retail subscribing applications to go off-line
for an extended period, either due to business requirements or problems. Basic sizing

5-4 Oracle Retail Integration Bus Implementation Guide

JMS Server Considerations

at a customer for any JMS system is for the disk (mount points or database) to be able
to handle 24 hours of maximum messages per topic.

Using Multiple JMS Servers
Having multiple JMS servers can improve overall system performance and
accommodate the following:
= the separation of high volume families from low volume ones.
= the customization of integration flows.
s Operational Quality of Service(QoS).
s distribution of the overall load on the integration system.

To meet the JMS agnostic requirement for RIB, a unique JMS server ID (jms-server-id)
is assigned to each RIB adapter. Accordingly, each RIB adapter can identify the J]MS
server to which it is associated. As the default, out-of-the-box adapters are configured
to be on jms-server jms1.

For each new jms-server-ID, a new resource adapter must be configured to point the
application server to the JMS provider's resource. The adapter communicates with the
JMS server and is deployed as part of the application. Where customization is
required, the adapter can be configured to point to a different JMS.

Note: For more information on using multiple JMS, see Chapter 6,
"IMS Provider Management," in the Oracle Retail Integration Bus
Operations Guide.

Oracle Streams AQ JMS

Streams AQ provides PL/SQL APIs to interact with the native AQ server inside the
Oracle database. Native AQ stream is not the same as AQ behaving as a JMS server.
RIB configures the native AQ server to behave as a JMS specification compliant J]MS
server implementation. Therefore, it is strictly prohibited to manipulate RIB's JMS
topics and RIB's AQ configurations directly with the AQ PL/SQL or java APIL

AQ JMS server can be configured to be highly available by taking advantage of Real
Application Cluster (RAC) functionality of the Oracle Database.

The RIB installation process defines the minimum RDBMS permissions and role that
are required for the RIB code to properly create the AQ JMS topics per the
specifications required for the RIB behavior. There should be no attempt to use
alternate settings or configurations.

Beyond the installation, there are critical considerations that must be addressed for
performance and operations that depend on the volumes and topology of the
deployment.

The Oracle RDBMS instance that will be configured as the AQ JMS must be tuned to
support the number of processes needed for the RIB adapters installed and configured
in each deployment environment.

The number of JMS AQ processes depends on the RIB configuration.

Note: To determine the probable number of RIB AQ JMS processes in
the deployment, see "The RIB on AQ JMS" in the Oracle Retail
Integration Bus Operations Guide.

Pre-Implementation Considerations 5-5

High Availability Considerations

Note: See also the Oracle Database Performance Tuning Guide 12¢
Release 1 (12.2).

See also the following information about High Availability.

High Availability Considerations

As businesses are maturing and having to do everything quicker, better, faster, and
with less resource and money, they are pushing similar expectation onto their IT
infrastructure. Business users are expecting more out of their IT investments, with zero
down time. Consistent predictable responding systems, which are highly available,
have become a basic requirement of today's business applications.

Modern business application requirements are classified by the abilities that the
system must provide. This list of abilities such as availability, scalability, reliability,
scalability, audit ability, recoverability, portability, manageability, and maintainability
determine the success or failure of a business.

With a clustered system many of these business requirement abilities gets addressed
without having to do lots of development work within the business application.
Clustering directly addresses availability, scalability, recoverability requirements
which are very attractive to a business. In reality though it is a tradeoff, clustered
system increases complexity, is normally more difficult to manage and secure, so one
should evaluate the pros and cons before deciding to use clustering.

Oracle provides many clustering solutions and options; those relevant to RIB are
Oracle database cluster (RAC) and WebLogic Server clusters.

Oracle Database Cluster (RAC) Concepts

A cluster comprises multiple interconnected computers or servers that appear as if
they are one server to end users and applications. Oracle Database Real Application
Clusters (Oracle RAC) enables the clustering of the Oracle database. Oracle RAC uses
Oracle Clusterware for the infrastructure to bind multiple servers so that they operate
as a single system.

Single-instance Oracle databases have a one-to-one relationship between the Oracle
database and the instance. Oracle RAC environments, however, have a one-to-many
relationship between the database and instances. In Oracle RAC environments, the
cluster database instances access one database. The combined processing power of the
multiple servers can provide greater throughput and scalability than is available from
a single server. Oracle RAC is the Oracle database option that provides a single system
image for multiple servers to access one Oracle database. In Oracle RAC, each Oracle
instance usually runs on a separate server.

Oracle RAC technology provides high availability and scalability for all database
applications. Having multiple instances access a single database prevents the server
from being a single point of failure. Oracle RAC enables the capability to combine
smaller commodity servers into a cluster to create scalable environments that support
mission critical business applications.

Note: For more information, see Oracle RAC documentation.

5-6 Oracle Retail Integration Bus Implementation Guide

High Availability Considerations

rib-<app> application and Oracle Database Cluster (RAC)

In this release, rib-<app> uses Oracle Streams AQ as the JMS provider. Oracle Streams
AQ is built on top of an Oracle database system. Since AQ is hosted by Oracle
database system, RIB can take advantage of database RAC capability for its JMS
provider. By using RAC configured AQ as the RIB's JMS provider you can scale the
RIB's JMS server vertically and horizontally to meet any retailer's scalability and high
availability need.

At runtime, rib-<app> uses the database for keeping track of its RIB Hospital records.
These RIB Hospital tables can be hosted by an Oracle RAC database providing high
availability and scalability for these RIB Hospital records.

WebLogic Server Cluster Concepts

A WebLogic Server cluster consists of multiple WebLogic Server managed server
instances running simultaneously and working together to provide increased
scalability and reliability. A cluster appears to clients to be a single WebLogic Server
instance. The server instances that constitute a cluster can run on the same machine, or
be located on different machines. You can increase a cluster's capacity by adding
additional server instances to the cluster on an existing machine, or you can add
machines to the cluster to host the incremental server instances. Each server instance
in a cluster must run the same version of WebLogic Server.

In an active-passive configuration, the passive components are only used when the
active component fails. Active-passive solutions deploy an active instance that handles
requests and a passive instance that is on standby. In addition, a heartbeat mechanism
is usually set up between these two instances together with a hardware cluster (such
as Sun Cluster, Veritas, RedHat Cluster Manager, and Oracle CRS) agent so that when
the active instance fails, the agent shuts down the active instance completely, brings up
the passive instance, and resumes application services.

In an active-active model all equivalent members are active and none are on standby.
All instances handle requests concurrently.

An active-active system generally provides higher transparency to consumers and has
a greater scalability than an active-passive system. On the other hand, the operational
and licensing costs of an active-passive model are lower than that of an active-active
deployment.

See the Oracle® Fusion Middeware Using Clusters for Oracle WebLogic Server
documentation for more information:

https://docs.oracle.com/middleware/1221/wls/CLUST/title.htm.

rib-<app> application and WebLogic Application Server Cluster

RIB uses a JMS server for message transportation between the integrating retail
applications. Since RIB must preserve the message publication and subscription
ordering, rib-<app>s deployed in WebLogic Application Server cannot be configured
in an active-active cluster mode. In active-active cluster mode, multiple subscribers
and publishers process messages simultaneously and there is no way to preserve
message ordering.

rib-<app> can be deployed to a single managed server instance of an WebLogic
Application Server that is clustered(active-passive). In this configuration even though
rib-<app> is deployed in a WebLogic cluster, multiple instances of the same rib-<app>
are not running at the same time, as there is only one managed server instance where
the rib-<app> is deployed and so RIB can still preserve message ordering.

Pre-Implementation Considerations 5-7

http://java.sun.com/products/jms

High Availability Considerations

To truly configure rib-<app>s for high availability, the only option is to configure it in
active-passive mode.

For WebLogic server, using a concept called Pinned Deployment, you can deploy and
target your applications to a particular instance in the cluster.

Note: When the AdminServer and second node are on two different

physical machines, the deployment of RIB to the second node may fail
the first time due to timing issues. If this occurs, the workaround is to

run the deployment script a second time.

At any given time, only one instance of the same RIB app can be running in a cluster.
Failure to ensure that only one is running can cause messages to be processed out of
sequence or applications to receive duplicate copies of messages.

5-8 Oracle Retail Integration Bus Implementation Guide

6

Deployment Architecture and Options

There are no physical location constraints on where rib-<app> applications can be
deployed as long as they are visible from the same network. But the decision on where
to physically and logically locate your rib-<app> applications has a huge impact on
the high availability, performance and maintainability of your integration solution, so
this decision must be given careful consideration.

Recommended Deployment Options

The RIB applications can be deployed in a variety of physical and logical
configurations depending on the retailer's needs. Oracle Retail has two recommended
configuration alternatives.

= Distributed: In this deployment, each of the rib application (rib-<app>.ear) is
deployed in the same WebLogic Application Server as integrating application
(<app>.ear) but in its own WLS managed server instance.

» Centralized: In this deployment, all rib applications (rib-<app>.ear) are deployed
in a single WebLogic Application Server (not managed server instance)
independent of where the Oracle Retails apps (<app>.ear) WebLogic Application
Server is.

In all cases, the rib application (rib-<app>.ear) should be deployed in its own managed
server instance. It is not recommended to deploy multiple rib applications into the
same WLS managed server instance, or to have the rib application (rib-<app>.ear)
deployed into the same WLS managed server instance as the integrating application
(<app>.ear). This configuration of deploying multiple rib-<app>s in one managed
server instance is not recommended or supported by WLS.

Deployment Architecture and Options 6-1

Distributed Deployment Alternative

Distributed Deployment Alternative

3
3
=
g
£
— 1

Following are some advantages and disadvantages of this configuration.

Advantages
= Required single Oracle Application Server for both rib (rib-<app>.ear) and
integrating application (<app>.ear).
= <app>.ear and rib-<app>.ear are close to each other but are still loosely coupled.
= ltis easy to find which rib-<app>.ear is associated with which integrating
application (<app>.ear).
= A single WLS instance is never the single point of failure for the whole integration
system.
Disadvantages

s When WLS server of rib-<app>.ear has to be bounced, the integrating application
(<app>.ear) becomes unavailable, as both reside in the same application server.
Similarly rib-<app>.ear has to bounce when <app>.ear needs bouncing. This
dependency between the two applications is not ideal.

= Even though both the applications reside within the same application server, it is
the configuration with the applications that are tying them together not the
physical characteristics of both being deployed in the same application server.
Physical location might be misleading if the system is not configured correctly.

= One application server has to work harder for management of resources and
services for both applications.

= System load distribution between rib-<app>.ear and <app>.ear is not possible as
both applications reside within the machine.

6-2 Oracle Retail Integration Bus Implementation Guide

Centralized Deployment Alternative

Who Should Use This Configuration?

Medium to large size deployments can use this configuration. This configuration is
appropriate when the machine hosting WLS is adequately sized for its job. A high
message volume in rib-<app>.ear can adversely affect the performance of the
integrating application (<app>.ear) in areas that are not related to integration. Ideally
this kind of behavior is not desirable for an online system.

Centralized Deployment Alternative

In this deployment, all rib applications (rib-<app>.ear) are deployed in a single
WebLogic Application Server but in separate Java EE containers (managed server
instances). The integrating applications (<app>.ear) are deployed in their own
separate WebLogic Application Server. There is only one JMS server and all
participating rib-<app> are configured to use the same JMS server.

————
Java App Server A

————
___________ Dalabose Server Database Server Each rib-<app> has a
|WLS Sarves T o /™ Hospital
[
: <app>.ear [Error
1 : Hospit
I I a
\ ,
———— -

Thate can only be
one nb-<app> per
managed server and

— oinly 1 instanca of

each running at any

___________ 5 RIB Senler point (Clustering is not
|WLS Serngr | i _' Ty supponed)
| |
i <app>.ear 1 H n
1 | i ribecapp> aar h
: 1 10 B 'LI’
| *
e ' (]) et
1 ors I
3 M=t =y L ava
I o SN T T — Classes, UQ
! Data_adr}
i i ¢ L
1
1 JMS Server ! rib-func- - igs-service
1 Wrifact war IL,. can be
_ : I ehistared
Oracle 1 [across
AQ JNMS oo e st T et
= WLS
__________ Server
pETTTTETET =7
s ",fu/ Sarvers.
1! il
i1 Igs-servicesar | |1 !
!
¥ -
i 3
‘ 3 Parly =
PLSOL AP t¥Syslems
T
PL/SOL AFL
AN
= |RIBIGSRSL Notes: The Cennized | LEGEND P
@ t Model has SODYN] A -
o |Parspective et WOm Optmization OMEpe08
© |Centralized o apphcations o & System System COnneclon
= |Deploymant caniral host, ssch fb- = Ol
E w0 s b i 8 O Stores f : smm_
5 WLS maraged weroer Systam F yshem
2 Reloase: 13.2.x | o @ ore can er e
iy bs one rit-Lapps 3 Party
2 p—— = Infrastructus
o — Systom System
@ Oracle
Corporation

Following are some advantages and disadvantages of this configuration.

Advantages
= Allintegration related components are deployed in one application server.

= The configuration is simple to find, view, and manage.

Deployment Architecture and Options 6-3

Conclusions

Disadvantages

= Because all rib-<app>.ear (applications) reside on the same WebLogic Application
Server, system resources are shared among the applications, which means each can
adversely affect the performance of another. For example, rib-aip.ear can become
slow when rib-rpm.ear is processing a lot of messages, even though these
applications are not at all related to each other.

s Overall performance can be slower as one application server machine has to do
lots of work.

= The RIB application server and host become the single point of failure for the
whole integration system (environment). That is, when the WebLogic Application
Server goes down the whole integration is down for all retail applications
(<app>.ear).

Who should use this Configuration?

Small to Medium size deployments can use this configuration. When the message size
is small and high volume is not expected, this configuration can be used. This
configuration can also be used when there are only two integrating application. As
each rib-<app>.ear publishes and subscribes to each other, they are indirectly (through
JMS) interdependent and so performance should not be affected too much when the
message volume is less.

Conclusions

RIB deployment recommendation does not take into account your hardware size,
network topology, existing legacy system, and so on. One size fits all does not work.
You need to do proper due diligence based on our recommendations and your specific
environment settings in order to come up with the best deployment architecture that
meets your needs.

6-4 Oracle Retail Integration Bus Implementation Guide

7

Cloud Enhancements

This chapter describes the RIB cloud enhancements.

The following diagram describes a sample hybrid architecture in which some of the
retail applications are on-premise and some other (including RIB) are in the cloud. In
this architecture, the retail applications SIM and RWMS are on-premise, while RIB and
BDI are on the cloud.

Figure 7-1 Retail Integration Suite - Cloud Architecture

Premise i Clond

| (Dracte

PR Tve——T

| |Service Bus

- o o \ m. e 8
| |
ThirdP. E || (e =
, -"-{ o e P e i Retail Iniegration Consale y e B

Internat

App L "I X Adninistiatos

| " Integration - "7-17"‘
e s Gateway | eusn res - Lo Iam— » .ﬂ
N . F Servicos) 7 L
= - 7~—>‘ RIBEXT | »[RBSIN | | [mmer) _\ \ RIB-TAFR J [RiB-ARMS]
s 0| =

s
*~ E
(i

_i

scap

nusm

. 'i\t(a-lww;ns\-‘ ‘r "
J‘ “fm g e u o o
|\1‘M\$g‘ e } ‘ isawicu
_{ BDI-EfT*Endl g § ‘ :@
|| = i
= » = " orace RDBMS
l *Lkl‘fﬁ REST [= . [E=
(g .
==

In order to support cloud deployment (including a hybrid cloud), RIB is enhanced
with the addition of two Web services. These are injector and publisher Web services
that allow retail applications to communicate with other applications.

Applications can invoke the new Web services to send and receive messages to/from
other applications via the RIB. Client applications must use credentials of a user with
the role ribAdminRole to call the publisher Web service. For consuming messages
(using the injector service), applications must create a user with a IntegrationRole role
on the server where the retail application is deployed. The rib-<app> must be
configured with the same user credentials at install time, so that RIB can call the
injector service with the correct credentials.

Cloud Enhancements 7-1

Configuring RIB-App as a Soap-App for Hybrid-Cloud Deployment

Configuring RIB-App as a Soap-App for Hybrid-Cloud Deployment

The following example describes the steps to configure a hybrid scenario in which SIM
is on-premise and RIB is on the cloud:

In the rib-deployment-env-info.xml file, configure the SIM application to be of
type "soap-app". Under <app-in-scope-for-integration>, change SIM from
javaee-app to soap-app:

<app id="sim" type="soap-app" />

Replace the existing rib-app section for rib-sim with below content. Edit the
properties so that they apply for rib-sim. For example:

<rib-app id="rib-sim" type="soap-app">
<deploy-in refid="rib-sim-wlsl" />
<rib-admin-gui>
<web-app-url>https://www.example.com<port>/rib-sim-appserver-gui/index.jsp</web
-app-url> <web-app-user-alias>rib-sim_rib-admin-gui_
user-name-alias</web-app-user-alias>
</rib-admin-gui>
<error-hospital-database>
<hosp-url>jdbc:oracle:thin:@www.example.com:<port>/<service></hosp-url>
<hosp-user-alias>rib-sim_error-hospital-database_
user-name-alias</hosp-user-alias>
</error-hospital-database>
<app-database-not-applicable />
<notifications>
<email>
<email-server-host>mail.example.com</email-server-host>
<email-server-port>25</email-server-port>
<from-address>admin@example.com</from-address>
<to-address-list>admin@example.com</to-address-1ist>
</email>
<jmx />
</notifications>
<app id="sim" type="soap-app">
<end-point>
<url>https://www.example.com:<port>/ApplicationMessageInjectorBean/InjectorServ
i1ce?WSDL</url>
<ws-policy-name>policyA</ws-policy-name>
<user-alias>rib-sim _ws_security_user-name-alias</user-alias>
</end-point>
</app>
</rib-app>
ws-policy-name should be configured with a value “policyA” as RIB supports
only this web service security policy.

Make sure the rib-sim_ws_security_user-name-alias user is a member of the sim_
integration_users group in the SIM WebLogic domain. Make sure the SIM services
are up and running and can be called via the SOAP UI using the credentials that
will be entered during RIB compilation.

Compile and deploy RIB.

Note: The above configuration pattern is applicable to all rib-<app>
except rib-rwms deployments on hybrid cloud.

7-2 Oracle Retail Integration Bus Implementation Guide

Configuring RIB-RWMS for Hybrid Cloud Deployment Topology

Configuring RIB-RWMS for Hybrid Cloud Deployment Topology

RWMS on-premise cannot communicate with RMS and other retail apps, which are all
in cloud via RIB. As RIB is already supported in cloud, for enabling the integration of
RWMS with all other retail applications which are in the hybrid cloud environment,
RIB follows the master/slave approach. The slave resides close to on-prem RWMS,
while the master is on-cloud. Communication between master and slave is through
web service calls. The RIB-RWMS master invokes the new web services exposed by
slave RIB-RWMS to send /receive messages to/from other applications on cloud via

RIB.

For RIB-RWMS to communicate with RWMS on premise and RIB on cloud, it should
be deployed in master-slave topology. Hybrid cloud set-up for RWMS involves a two
part installation, one for each master (cloud) and slave components (on-premise).

Figure 7-2 RIB-RWMS Hybrid Cloud Architecture

RIB RWMS Hybrid Cloud Architecture

Premise
RIB-RWMS
[slave)
Pub/Sub Retry Log
“3:::" A:T;:' Manager

Internet

e

Cloud
RIB-RWMS
(master)
Pub/Sub Retry
Adapter Adapter
Control Control

{
L RemuteFlsdPubCumpServioe].

GeiNext
Consume
PLELQ AP

:mjj

s0ap

Internet

L

RIB-SIM

/44444‘ AQ F——————————f\

— RIB-RMS

[/
- ’

Configuring RIB-RWMS as Master Application

The following example describes the steps to configure RIB-RWMS in master/slave

pattern.

-
L RemotePlsglPubCompClient J

[..39] .

|

&

RMS - Oracle RDBMS

Application

s In the rib-deployment-env-info.xml file, configure the RWMS application to be of
type " master-plsql-app". Under <app-in-scope-for-integration>, change RWMS

from plsql-app to master-plsql-app.

<app id="rwms" type="master-plsgl-app" />
= Replace the existing rib-app section for RIB-RWMS with a copy of the below
configuration. Edit the properties so that they apply for RIB-RWMS.

For example:

<rib-app id="rib-rwms" type="master-plsqgl-app">

Cloud Enhancements 7-3

Configuring RIB-RWMS for Hybrid Cloud Deployment Topology

<deploy-in refid="rib-rwms-wlsl" />
<rib-admin-gui>
<web-app-url>http://host:port/rib-rwms-appserver-gui/index. jsp</web-app-url>
<web-app-user-alias>rib-rwms_
rib-admin-guiadmin-user-name-alias</web-app-user-alias>
<web-app-user-alias>rib-rwms_rib-admin-gui_
operator-user-name-alias</web-app-user-alias>
<web-app-user-alias>rib-rwms_rib-admin-gui_
monitor-user-name-alias</web-app-user-alias>
</rib-admin-gui>
<error-hospital-database>
<hosp-url>jdbc:oracle:thin:@<host>:<port>/<service></hosp-url>
<hosp-user-alias>rib-rwms_error-hospital-database_
user-name-alias</hosp-user-alias>
</error-hospital-database>
<app-database>
<app-db-url>jdbc:oracle:thin:@<host>:<port>/<service></app-db-url>
<app-db-user-alias>rib-rwms_app-database_
user-name-alias</app-db-user-alias>
</app-database>
<notifications>
<email>
<email-server-host>mail.example.com</email-server-host>
<email-server-port>25</email-server-port>
<from-address>admin@example.com</from-address>
<to-address-list>admin@example.com</to-address-1list>
</email>
<jmx />
</notifications>
<app id="rwms" type="soap-app">
<end-point>
<!-- URL of slave rwms host -->
<url>http://<host-where-rib-rwms-slave-app-is-deployed>:<port></url>
<!-- Supported security policy names =policyC(default) OR
policyA -->
<ws-policy-name>policyA</ws-policy-name>
<user-alias>rib-rwms_ws_security_user-name-alias</user-alias>
</end-point>
</app>
</rib-app>
= ws-policy-name should be configured with a value "policyA", as RIB supports
only this web service security policy except for rib-oms.

= Make sure the rib-rwms_ws_security_user-name-alias user is same as rib-rwms_
rib-admin-gui_admin-user-name-alias" on slave side.

= Compile and deploy RIB.

Note: In the above configuration the rib-rwms type is
"master-plsql-app", as the master rib-rwms application will be
deployed on cloud. It does not have access to the actual app database
schema that is on premise. <app-database> in the above configuration
will point to the dummy schema, created during the installation. Refer
to RIB Installation Guide for more details.

7-4 Oracle Retail Integration Bus Implementation Guide

Configuring RIB-RWMS as Slave Application

Configuring RIB-RWMS as Slave Application

Make the below configuration changes in the rib-home where you extracted
RibKernel19.0.0ForRwmsSlavel9.x.xApps_eng_ga.jar.

In the rib-deployment-env-info.xml file, configure the RWMS application to be of
type "slave-plsql-app". Under <app-in-scope-for-integration>, change RWMS from
plsql-app to slave-plsql-app.

<app id="rwms" type="slave-plsqgl-app" />

Replace the existing rib-app section for RIB-RWMS with a copy of the below
configuration. Edit the properties so that they apply for RIB-RWMS.

For example:

<rib-app id="rib-rwms" type="slave-plsqgl-app <deploy-in refid="rib-rwms-wlsl"
/>
<rib-admin-gui>
<web-app-url>http://<host>: <port>/rib-rwms-appserver-
gui/index. jsp</web-app-url>
<web-app-user-alias>rib-rwms_rib-admin-gui_
admin-user-name-alias</web-app-user-alias>
<web-app-user-alias>rib-rwms_rib-admin-gui_
operator-user-name-alias</web-app-user-alias>
<web-app-user-alias>rib-rwms_rib-admin-gui_
monitor-user-name-alias</web-app-user-alias>
</rib-admin-gui>
<error-hospital-database>
<hosp-url>jdbc:oracle:thin:@<host>:<port>/<service></hosp-url>
<hosp-user-alias>rib-rwms_error-hospital-database_
user-name-alias</hosp-user-alias>
</error-hospital-database>
<app-database>
<app-db-url>jdbc:oracle:thin:@<host>:<port>/<service></app-db-url>
<app-db-user-alias>rib-rwms_app-database_user-name-alias</app-db-user-alias>
</app-database>
<notifications>
<email>
<email-server-host>mail.example.com</email-server-host>
<email-server-port>25</email-server-port>
<from-address>admin@example.com</from-address>
<to-address-list>admin@example.com</to-address-list>
</email>
<jmx />
</notifications>
<app id="rwms" type="plsqgl-app">
<jndi-not-applicable />
</app>
</rib-app>

Note: In the above configuration the RIB app (rib-rwms) type is
"slave-plsql-app", as the slave RIB-RWMS application will be
deployed on premise. It does not have access to the actual error
hospital and AQ database schema that is on cloud.
<error-hospital-database> in the above configuration will point to the
dummy schema, created during the installation. Refer to the RIB
Installation Guide for more details.

Cloud Enhancements 7-5

Configuring RIB-RWMS as Slave Application

7-6 Oracle Retail Integration Bus Implementation Guide

RIB Self-Service Enablement

The Self-service enablement is a feature for provisioning RIB on cloud post
deployment only. Because of the promising high availability feature of applications on
the cloud environment, this is an essential feature that minimizes the redo of the RIB
install cycle post configuration changes to any RIB-app.

The Self-service enablement allows below provisioning in rib-<app>:

Table 8-1 Self-Service Feature

Self-Service Feature: Self Service Feature on RIB-Admin GUI

Provisioning RIB adapters

Choosing the subset of RIB ~ =RAcLe
adapters in scope for s g

integraﬁon rib-sim:Adapter Selection N I
Provisioning System
Optlons ORACLE’
Dynamically modifying — -
configurations via, rsimiSystem Optens b et o 08 201 15032 G050 s St T
rib-<app> properties file. B
b oz

Provisioning Injector Service

ORACLE"
URL as
Hook to alternate — oo i Lo
SubSCI‘lblI‘lg retall — T bage Refreshed Mon Oct 09 2017 13:03:42 GMT+0530 (India Standard Time).
application installation.
RIB ServiceMonitor

ORACLE
Verify InjectorService ot
provisioned in previous cons baeni oot

rib-sim:Rib Services Health Check
step. Pago s Tus Now 19201 1357:25 GHIT0530 (i Standard i)

Ty ———
GG T AN Gy i ongtosins

RIB ServicesMonitor

ager LogManager RIB Logs

RIB Self-Service Enablement 8-1

Provisioning RIB-Adapters

Provisioning RIB-Adapters

Every rib-<app> contains a set of publish and subscribing adapters for exchanging
messages between retail applications. Subscribing adapters are MDB which are
resource intensive. The higher the number of adapters in scope the higher is the
resource crunch. In an environment which does not make use of all the publishing and
subscribing adapters bundled with the rib-app, the user is allowed to choose a subset
of the adapters needed based on the RIB functional flow. This configuration change
takes effect dynamically and does not require a redeployment of the rib-<app>.

Follow the steps below for configuring the rib-<app> adapters in scope of the
integration.

1. For every rib-<app> that needs a dynamic adapter selection to be enabled, add the
property below in the rib-<app>. properties file before deploying the app.

enableDynamicAdapterInstanceSelection=true
2. Only if the above property is set to true, the user can select the adapters
dynamically. By default, there are no rib-adapters in scope of integration.

ORACLE’
RETAIL

Welcome, ribadmin_Logout

rib-sim:RIB Adapter Manager
Page Refreshed Mon Oct 09 2017 11:56:53 GMT+0530 (India Standard Time).
Home | Adapter Manager | LogManager RIBlogs — Manage Configurations

This page shows the RIB Adapters (publishers. subscriberstafrs and/or hospitals) deployed on this RIB instance

View Al -
(Refresh Data)
(st ston)
Expand Al | Collapse All
Select Name Status Start Time JMS Server ID Edit Properties View Log
o 'V Subscribers
] 'V Hospitals

1V Request_Publishers

Home | Adapter Manager | LogManager RIBlogs —Manage Configurations

Copyright © 2017, Oracle andior s afflates. Alights reserved.

3. In the RIB-Admin GUI, the Manage Configuration > Adapter Selection tab
provides the list of all available adapters whose subset can be chosen to publish,
subscribe and retry rib messages based on rib integration flows.

ORACLE’
RETAIL

Welcome, ribadmin_Logout

rib-sim:Adapter Selection
Page Refreshed Mon Oct 09 2017 12:20:08 GMT+0530 (India Standard Time).

Home AdapterManager LogManager RIBlogs | Manage Configurations
System Options Injector Senice | Adapter Selection

This page shows allthe RIB Adapters (publishers. subscribers.tafrs and/or hospitals) available user can pick the adapters from list

View Al -

(e) Canel)
Expand Al | Collapse All
Name Select Adapter

'V Subscribers
ASNIn_sub
CIPreChg_sub
Diffs_sub
DivyStt_sub
FulfiOrd_sub
temLoc_sub
tems_sub
MerchHier_sub
Order_sub
Partner_sub
PrmPrcChg_sub
RTVReq_sub
RevUnitAdj_sub
RegPrcChg_sub
SOStatus_sub
SeedData_sub
StockOrder_sub

000000000 000000000

4. Select the subset of publishing, subscribing and retry adapters depending on the
rib-integration-flow in consideration and click Save.

Consider the below rib-integration flows:
rib-sim publishing the InvReq message

<message-flow id="31">

8-2 Oracle Retail Integration Bus Implementation Guide

Provisioning RIB-Adapters

<node id="rib-sim.InvReqg pub" app-name="rib-sim"
adapter-class-def="InvReq pub" type="DbToJms">
<in-db>default</in-db>
<out-topic>etInvReg</out-topic>
</node>
<node id="rib-ext.InvReq pub" app-name="rib-ext"
adapter-class-def="InvReq pub" type="DbToJms">
<in-db>default</in-db>
<out-topic>etInvReg</out-topic>
</node>
<node id="rib-rms.InvReq sub" app-name="rib-rms"
adapter-class-def="InvReq sub" type="JmsToDb">
<in-topic>etInvReg</in-topic>
<out-db>default</out-db>
</node>
<node id="rib-ext.InvReq sub" app-name="rib-ext"
adapter-class-def="InvReq sub" type="JmsToDb">
<in-topic>etInvReg</in-topic>
<out-db>default</out-db>
</node>
</message-flow>
rib-sim subscribing the ItemLoc message from RMS

<message-flow id="6">
<node id="rib-rms.ItemLoc_pub" app-name="rib-rms"
adapter-class-def="ItemLoc_pub" type="DbToJms">
<in-db>default</in-db>
<out-topic>etItemLocFromRMS</out-topic>
</node>
<node id="rib-ext.ItemLoc_pub" app-name="rib-ext"
adapter-class-def="ItemLoc_pub" type="DbToJms">
<in-db>default</in-db>
<out-topic>etItemLocFromRMS</out-topic>
</node>
<node id="rib-sim.ItemLoc_sub" app-name="rib-sim"
adapter-class-def="ItemLoc_sub" type="JmsToDb">
<in-topic>etItemLocFromRMS</in-topic>
<out-db>default</out-db>
</node>
<node id="rib-rwms.ItemLoc_sub" app-name="rib-rwms"
adapter-class-def="ItemLoc_sub" type="JmsToDb">
<in-topic>etItemLocFromRMS</in-topic>
<out-db>default</out-db>
</node>
<node id="rib-ext.ItemLoc_sub" app-name="rib-ext"
adapter-class-def="ItemLoc_sub" type="JmsToDb">
<in-topic>etItemLocFromRMS</in-topic>
<out-db>default</out-db>
</node>
</message-flow>
Considering the above flows, select InvReq_Pub, and ItemLoc_sub and both
Hospital adapters as shown in the image below.

RIB Self-Service Enablement 8-3

Provisioning System Options

Name Select Adapter

¥ Subscribers
ASNIn_sub
CIiPreChg_sub
Diffs_sub
DivSit_sub
FulfiOrd_sub
ltemLoc_sub
tems_sub
MerchHier_sub
Order_sub
Partner_sub
PrmPreChg_sub
RTVReq_sub
RevUnitAd_sub
RegPrcChg_sub
SOStatus_sub
SeedData_sub
StockOrder_sub
Stores_sub
UDAs_sub
Vendor_sub
WH_sub

¥ Hospitals
jms_hosp
sub_hosp

¥ Publishers
ASNOW_pub
DSDReceipt_pub
FUIfiOrdCimCne_pub
FUIfiOrdCim_pub
InvAdjust_pub
InvReq_pub
PreChgReq_pub
RTV_pub
Receiing_pub

O0OEOO0O0O0O0O0REO0O00O0O000000000000ROO0O000

5. Verify that the selected adapters are reflected on the Adapter Manager tab and are
up and running.

ORACLE’

RETAIL
Retail Integration Bus Manager

Welcome, ribadmin_Logout

rib-sim:RIB Adapter Manager
Page Refreshed Mon Oct 09 2017 12:54:21 GMT+0530 (India Standard Time).
Home | Adapter Manager | LogManager RIBlogs — Manage Configurations

This page shows the RIB Adapters (publishers. subscriberstafrs and/or hospitals) deployed on this RIB instance
View Al -

Refresh Data)
Start) Stop
Expand Al | Collapse All
Select Name Status Start Time JMS Server ID Edit Properties View Log
o 'V Subscribers
a temLoc Subscriber, channel 1 N Mon Oct 09 11:56:49 IST 2017 ims1 B
] ¥ Hospitals
[a] JMS Hospital Retry IS Mon Oct 09 11:66:18 1T 2017 ims1 B B
[a] SUB Hospital Retry IS Mon Oct 09 11:66:18 1T 2017 ims1 Ep Ep
¥ Request_Publishers
IniReq Publisher, channel 1 Py ims1 B

Home | Adapter Manager | LogManager RIBlogs —Manage Configurations

6. Once the subset of adapters chosen for integration are saved, they cannot be
undone.

7. To have all the adapters for rib-<app> in scope by default, set the property as
follows:

enableDynamicAdapterInstanceSelection = false
This is the default value for all rib-<app>s except rib-ext.

Provisioning System Options

Application specific properties for the rib-<app> are configured in the rib-<app>.
properties file. When RIB is deployed on cloud, the application specific properties can
be configured in the RIB-Admin GUI application. The Manage Configuration > System
Options tab allows the user to edit the properties values post deployment.

ORACLE’

RETAIL
Retail Integration Bus Manager

Welcome, ribadmin_Logout

rib-sim:System Options
Page Refreshed Mon Oct 09 2017 15:19:22 GMT+0530 (India Standard Time).
Home AdapterManager LogManager RIBLlogs | Manage Configurations

System Options | Injector Senice

Rib Properties

enableDynamicAdapterinstanceSelection false @z | 2

System Options | Injector Senice

Home AdapterManager LogManager RIBlogs | Manage Configurations

Oracle Retail Integration Bus Implementation Guide

RIB ServiceMonitor

Provisioning InjectorService URL

The Oracle Retail application residing on-premise should be deployed as a soap-app to
subscribe the messages from RIB on cloud. RIB subscribing adapters call the Injector
Service hosted by the on-premise retail application to inject the messages into the retail
application database.

In the RIB-Admin GUI, the Manage Configuration > Injector Service page allows the
admin user to configure a different injector service URL than the one configured
during the deployment. RIB dynamically updates the subscribing adapters to send the
messages using the injector service. This injector service URL should be secured, by
using policyA or policyC. This secured user, with which the service is secured should
belong to the IntegrationGroup in myrealm of the retail application's weblogic
domain.

RETAIL
Welcome, ribadmin _Logout
rib-sim:Injector Service
Page Refreshed Fri Oct 13 2017 11:42:44 GMT+0530 (india Standard Time).
Home AdapterManager LogManager RIBlogs | Manage Configurations
System Options Injector Service
Configure Injector Service URL
Current Injector Service URL
[Clupdate connection details
New Injector Senice Host* T
New Injector Senice Port* 1234
[Clupdate security details
New Securiy Policy Name® [pgjicyc el
Secured User Alias
Secured User Name* vessssss Show Username
Secured User Password®
Save) Cancal)
System Options Injector Service

The admin user can edit the existing injector service URL details by providing new
host and port details. The user also has to configure the security policy with which the
new service configured is secured with, and the user credentials for RIB invoking the
service.

RIB ServiceMonitor

Once the RIB integration environment is configured for use by various retail
application, as a sanity test the user may need to verify the integration end points. For
RIB on cloud, we can ping-test various webservices consumed by RIB using RIB
admin GUL

In RIB Admin GUI, the RibServiceMonitor page lists all the webservices consumed by
the rib-application and allows the user to ping the same. The webservices are pingable
only if the "ping" operation is supported by the webservice. Also the user can access
the WSDL of these webservices. Below figure explains the same.

ORACLE’
RETAIL

Retail Integ

Welcome, ribadmin _Logout
e

rib-sim:Rib Services Health Check
Page Refreshed Tue Nov 19 2019 13:57:25 GMT+0530 (India Standard Time).

Home AdapterManager LogManager RIBLogs Manage C RIB
RIB Web service accessibility can verified here.Know the status of displayed web services by ping testing them
ServiceName SecurityPolicy WsdIURL Alias Ping Status ReasonCode
RibAppMonitoringDataAggregatorService policyC DL rib-func-artifact_web-app_user-name- | Ping » Unsupported Operation
InjectorService policyC InjectorService?WSDL rib-sim_ws_security_user-name-alias | Ping

Home AdapterManager LogManager RIBLogs Manage C RIB

RIB Self-Service Enablement 8-5

RIB ServiceMonitor

This page can be used to test the provisioning of InjectorService URL. Only RIBAdmin
and RIBOperator users allowed to access the page.

8-6 Oracle Retail Integration Bus Implementation Guide

9

Implementation Process

This release of RIB defines the full life cycle of the RIB software product. The RIB life
cycle and phases are described in detail in the software lifecycle management section
of this document. For every life cycle phase and task that RIB defines, it provides
corresponding tools and utilities to manage and operate on those phases. The tools
and utilities are described in detail in the Oracle Retail Integration Bus Operations Guide.

There are several prerequisite steps that should be followed to have a successful RIB
installation and deployment.

Understand the RIB Core Concepts.
Understand the integration message flow paths.
Understand the deployment options.
Understand the RIB life cycle.

Understand the physical and logical requirements and limitations of the RIB
Components.

Understand the RIB Operational considerations.

The process of implementation should follow these general steps:

Work with the teams at your organization dedicated to Oracle Retail to coordinate
plans for the number and type of environments needed (for example, Dev,
Integration, Production).

Each type of environment needs to be sized, deployed, and managed in
conjunction with the implementation of the Oracle Retail applications.

— Itis critical to understand the volume requirements of the production system
so that the appropriate decisions can be made about the deployment option
and the physical location and sizing.

All deployments have integration to existing retailer systems. It is critical to
understand the position of the RIB as it fits into the overall integration architecture
and that the current operations and architecture team understand the RIB and its
capabilities.

Select a deployment option (centralized or distributed).

— This may be mixed depending on the phases of deployment. Development
and test may be centralized and production distributed.

- Understand the operational complexities of each and plan for the staffing.

Work with the application server administration teams to determine the physical
and logical placement of the RIB components.

Implementation Process 9-1

Implementation Verification and Validation

= Work with the system administrator and database administrator to appropriately
place, size, and configure the AQ JMS.

= Work with the system administrators to select the central RIB management
location, rib-home.

s The installation of the RIB has many pre-requisites and dependencies that require
the understanding, support and effort of database administrators, system
administrators, application server administrators, and your organization's Oracle
Retail application teams. It is a critical role of the RIB system administrator to
work with each team, regardless of the site organization structure. See the Oracle
Retail Integration Bus Installation Guide.

— The operation requirements and considerations are covered in the Oracle Retail
Integration Bus Operations Guide. The guide should be understood before the
implementation so that the factors can be considered in the planning.

» Create operational plans for the RIB life cycle. See the Oracle Retail Integration Bus
Operations Guide.

s Create plans for environment monitoring and maintenance. See the Oracle Retail
Integration Bus Operations Guide.

= Plan to performance test. The RIB supplies tools to aid in the testing, but it is a
difficult task that involves the database administrators, system administrators,
application server administrators, and the Oracle Retail application teams.

Note: For more discussion on Performance see "Performance
Considerations" in the Oracle Retail Integration Bus Operations Guide.

Implementation Verification and Validation

Verification is the process of reviewing, inspecting, testing, and documenting that the
product behaves in a manner as defined by the product requirement specification.
Validation on the other hand is the process of making sure that the product's runtime
behavior meets the retailer's needs and requirements. RIB provides tools and utilities
to verify that a RIB installation is configured correctly and works properly when
business events (messages) occur in your enterprise. RIB also provides tools to test
integration infrastructure standalone, independent of any Oracle Retail applications.

Implementation Environment Verification

The RIB Diagnostic and Monitoring Tool (RDMT) can be used to verify your
installation and configurations. The RDMT configuration report utility generates an
extensive configuration report of your runtime environment. It is recommended to
regularly perform full RIB health check using the RDMT tool sets to proactively find
problems and recover before any problem becomes a serious issue.

See the Oracle Retail Integration Bus Support Tools Guide for RDMT information.

Integration Environment Testability

Identifying the ownership of an integration problem is one of the hardest problems in
any integration project. Data mismatch problems always show up in the integration
layer but in reality it is the source and the destination applications that have a
mismatch in the data model. To be able to isolate integration infrastructure problem
versus retail application API problem, it is very important to be able to test the
integration infrastructure independent of the retail applications.

9-2 Oracle Retail Integration Bus Implementation Guide

Implementation Verification and Validation

In this release, RIB provides four test harnesses that allow you to build a standalone
working integration environment without the need to install any Oracle Retail
applications. The test harnesses simulate Oracle Retail PL/SQL applications (RMS,
RFM, and RWMS), Oracle Retail Java EE applications (SIM, RPM, and AIP), and
Oracle Retail SOAP applications (SIM). The test harnesses are known as
plsql-api-stubs, javaee-api-stubs, plsql service interface tester, and java service
interface tester respectively.

See the Oracle Retail Integration Bus Operations Guide for information about the RIB test
harness.

Implementation Process 9-3

Implementation Verification and Validation

9-4 Oracle Retail Integration Bus Implementation Guide

10

Performance

Performance Factors

The performance of each of these components is influential in the overall performance
of the system:

The application server(s) topology and configuration.
The RIB deployment approach.
The hardware sizing and configuration of the RIB hosts.

The hardware sizing and configuration of the applications that are connected to
the RIB.

The hardware sizing and configuration of the JMS provider host.

The hardware sizing and configuration of the RIB Hospitals hosts.

There are other factors that determine the performance of the overall system. Some of
these factors in a RIB environment are:

Number of channels configured

Number of messages present in the topic

Size of the message

Database clustering

Application Server topology

Number of TAFRs in the processing of the message

Message aggregation

See "Performance Considerations" in the Oracle Retail Integration Bus Operations Guide.

Note: For more information, see “Performance Considerations,” in
the Oracle Retail Integration Bus Operations Guide.

Performance and Parallel Logical Channels

The RIB must provide guaranteed once and only once processing of business events
(messages) across the enterprise. Maintaining the order of business events across the
enterprise is critical to data integrity.

Performance 10-1

Performance and Parallel Logical Channels

To provide guaranteed sequencing of message processing, RIB requires a guaranteed
first in, first out (FIFO) messaging system with guaranteed FIFO rollback. That is,
when you rollback the message from the consumer you get the same message back the
next time so that it is processed in sequence. JMS Provider provides this FIFO topic
and FIFO rollback capability, which enables RIB to guarantee message sequencing.

Processing messages in sequence results in operational overhead, as every message
must be checked against the database to find the status of previous messages on which
itis dependent (same businessObjectid). Sequencing creates an inherent bottleneck, in
that only one message is processed at once. For example, messages can come at the
rate of 100 messages per second, but a RIB subscribing adapter can process only one of
those messages at a time to preserve the order. To get around this bottleneck and
improve performance, RIB provides options for optimization and functionality.

First, RIB processes messages in sequence only when the publishing application wants
it to be processed in sequence. The message producer application defines a
businessObjectid whose existence informs RIB that this and all subsequent messages
with the same businessObjectid have to be processed in order.

Second, parallel logical channels can be created for each message flow paths in the
integration system to improve performance. Parallel logical channels are virtual logical
message flow paths within the same physical JMS topics. To add additional channels,
each adapter participating in a message flow must be configured with additional
adapter instances. See the Oracle Retail Integration Bus Operations Guide for how to
configure parallel logical channels.

Using parallel logical channels is not the solution for all performance problems in the
integration system. They can help only when the API for the corresponding
applications is written with non-locking logic and concurrency invocation in mind.

Generally, integration for the retail application APIs are the biggest factor for
bottlenecks in the overall messaging system throughput. It is not appropriate to start
creating parallel logical channels at the first sign of performance problem. It is
important to analyze and tune the integration APIs of the retail applications before
considering the use of parallel channels.

Using parallel logical channels increases complexity, CPU demands, and memory
requirement, resulting in more operational overhead. Use them only when, after all
other components are fully tuned, you are still not able to meet your target numbers.

10-2 Oracle Retail Integration Bus Implementation Guide

11

Security

Security in the integration layer is a big concern for every retail enterprise. The
security system should be open enough to allow trusted remote applications to
integrate easily and, at the same time, lock down unauthorized remote access. To
address security concerns, RIB utilizes the security modules available in the Oracle
middle ware and database systems.

There are two categories of administrators in RIB: RIB System Administrators and RIB
Application Administrators. RIB System Administrators are involved in installing,
configuring, deploying defect fixes, and making sure that the integration infrastructure
is up and running properly. They generally are concerned with the business side of the
integration system. Their tasks include bringing up or taking down RIB adapters, and
fixing data issues with message payloads using RIHA. There are separate realms,
roles, groups, and users defined for each category of RIB administrators.

RIB Application Administrators Security Domain

WebLogic server has a default security realm. For each rib-<app>.ear deployed, RIB
creates the users in the default security realm belonging to the below groups:

s ribAdminGroup

s ribOperatorGroup

s ribMonitorGroup

The default groups and user that RIB creates must not be deleted or modified.

RIB follows a role-based authorization for allowing valid users to perform a defined
set of operations from the rib-admin-gui. The user belonging to each of above groups
will be associated with a well defined role and thus able to perform authorized
operations only. It is recommended that you have a unique user belonging to each

group.

RIB System Administrators Security Domain

The RIB System Administrators focus primarily on managing access to the RIB JMS
server, application server instances, RIB Hospital database, and the rib-home
workspace. RIB must be deployed with the default WebLogic admin user.

Note: For more information about security, see Oracle Retail
Integration Bus Security Guide or see Chapter 7, "RIB Security,” in the
Oracle Retail Integration Bus Installation Guide.

Security 11-1

RIB System Administrators Security Domain

11-2 Oracle Retail Integration Bus Implementation Guide

12

Monitoring

This chapter describes monitoring via the RIB in detail.

Monitoring the RIB at Run Time

RIB runtime monitoring enables you to monitor the state and volume of messages
running through the RIB system. It also provides the status of various components of
the system. The current RIB system and message flows are interrogated transparently
to collect useful metrics that immensely enable business users and system
administrators to review the state and health of the system. The monitoring
enhancement collects application and adapter statuses, message event counts,
transaction counts, error hospital statistics, and server resource utilization statistics.

The following graphic describes the architecture of the system:

RIB Monitoring Architecture

R S— ' RIB Domain
[T —— ata
= ¢
e —
(" RIB Func Artifact App
[T re— Jms Console App
s
P i B U™ o =]
O —
R Sl == |
= / N #
R — I
(S
= -
R
o

> | .- : RSB Domain
RSB-HOME

\

Retal ndegraton Console
)

Instance and Central Repository

The monitoring metric data is collected in the rib-<app> instances. The data collected
from all rib-<app> instances are consolidated in the central location. Both the
collection and consolidation server instances store the data in in-memory repositories.
Various pieces of data are collected at different times based on the nature of data and
performance considerations. At any point of time, the repository data shows a
complete picture of the state as of the last data collection time.

Monitoring 12-1

Monitoring Data as XML

Monitoring Data as XML

The collected data is reported in a defined format. The monitoring data is exchanged
between components that produce and consume in XML format. rib-<app> instances
produce the data and the central repository and Retail Integration console (RIC) (or
third-party tools) consume the monitoring data.

Push Versus Pull

Sometimes, data is collected by scheduled background jobs. Message related data is
collected asynchronously as the messages are consumed/published by adapters. The
collected metric data is kept in a local repository in the rib-<app> instance. This
information is pushed to a central repository (in memory) on a scheduled frequency
(every two minutes). If any rib-<app> is down, the central repository does not receive
data from that instance. The Central repository does not poll for data nor pull data
from the rib-<app> instances. This way the central repository has no dependency on
the rib-<app>s.

While each rib-<app> has its own monitoring data, the central repository holds the
consolidated data from all the rib-<app> instances.

Service Interfaces

The monitoring data in the rib-<app> instances and the central repository are made
available to RIB monitoring system as well as the third-party tools via SOAP web
services running in the respective server instances. For more information, review the
sample data and the Web service WSDL URL available at: Sample Data from RIB App
Monitoring Service

Deployment Considerations

The out-of-the-box implementation of the monitoring services is secured. So
credentials are required for the rib-<app> to call the integration monitoring Web
service. These credentials need to be provided during RIB compilation. This is the only
change from an installer perspective for the monitoring service implementation.

What is an Event?

RIB messages flow from the publishing apps to subscribing apps, TAFRs, and error
hospital in the RIB system. Sometimes, messages can be rolled back due to application
or system errors. Each attempted delivery, whether successful or not, is called an
Event. The RIB monitoring system counts the events which include both successful
and failed delivery of messages. Also, any changes in the adapter status, error hospital
data, server resource utilization etc. is considered an event.

There are two types of events - Adapter Events and Application Events.

How are Event Count and Messages Count Related?

Event count includes both successful and failed message counts. There is no reliable
way of getting the exact successful message count without affecting the performance
of the system. Hence, the RIB monitoring system collects event counts instead of
message counts. For the most part, they are similar, but not exact.

12-2 Oracle Retail Integration Bus Implementation Guide

TAFR Instrumentation

Adapter Events

Adapter events are adapter level events like message flows (subscription, publishing)
and adapter statuses. In the RIB monitoring system, message related adapter events
are collected in real-time. Adapter status events are collected by scheduled
background threads.

Application Events

Application events are application level events like server resource (CPU, Memory)
utilization, application status, error hospital data, etc. These metrics are collected by
scheduled background threads.

Event Collection Schedule

Various events in the system are collected at various times.

Note: There is a difference between the collection time and reporting
time. For example, even though the event

counts are collected in real-time, they are not available in the central
repository immediately.

The following is a complete schedule of collection times:

Metric Event Type Schedule

Event Count Adapter Real time

Adapter Execution Time Adapter Real time

API Execution Time Adapter Real time

Adapter Status Adapter Every three minutes
Application Status Application At startup

Error Hospital Statistics Application Every five minutes
CPU Utilization Application Every five minutes
Memory Utilization Application Every five minutes

Publisher Versus Subscriber Events

The publishing event does not collect certain metrics, like the API Execution Time,
since it is not possible to find out the API execution time once the message is
published. It collects only the Adapter Execution time, which is the time taken to
publish the message.

TAFR Instrumentation

TAFRs are monitored for collecting various time metrics. Measuring the time for the
TAFR API execution begins as soon as the TAFR starts transforming the inbound
message to an outbound message and ends when the message get transformed.
Collecting Adapter Execution Time begins as soon as the message is available for the
rib-tafr to transform and ends after routing the message to the destination topic.

Monitoring 12-3

Data Retention

Data Retention

The monitoring data is collected in rib-<app> repositories and a central repository in
the functional artifact app. These are in-memory repositories. The information in the
repositories is lost when the application is restarted. Additionally, the repositories are
not purged, so the data collects as long as the applications run. The monitoring data is
collected in hourly buckets. There can only be a maximum of 24 records per day. This
strategy reduces the chances of the system going out of memory.

Metrics Definitions

Event Counts

The following sections describe the metrics that are collected by the system.

When a message is subscribed or published, an event is generated to increment the
event count for the hour of the day.

Adapter Execution Time

For a subscriber adapter, the time is noted as soon as the message arrives. At the end
of the onMessage method the difference is calculated. An Adapter Execution Time
event is created, which is used (if applicable) to set the minimum, maximum, and last
adapter execution time for the hour of the day.

For a publishing adapter, the time is noted at the beginning and end of the publishing
method, and the difference is calculated. An Adapter Execution Time event is created,
which is used (if applicable) to set the minimum, maximum, and last adapter
execution time for the hour of the day.

API Execution Time

For a subscriber adapter, the time is noted around the API call and the difference is
calculated. An API Execution Time event is created, which is used (if applicable) to set
the minimum, maximum, and last API execution time for the hour of the day.

For publishing adapter, there is no API execution time.

Adapter Status

A scheduled background job collects the Adapter status and updates the local
repository. If the RIB application is down, since the job cannot run the status of the
adapter in the central repository will be the last known status until the cache expires.
After the cache expiry it will be "Unknown' until the status is reset by the rib-<app>.

Commits and Rollbacks

The commit and rollback count is the same information maintained by WebLogic
server for the E]Bs transactions. RIB monitoring system interrogates the JMX MBeans
for the commit and rollback counts and updates the local repository. A message flow
may result in more than one commit and rollback, depending on various scenarios of
failures.

12-4 Oracle Retail Integration Bus Implementation Guide

Application Services

CPU and Memory

CPU and Memory information are also collected by background thread on scheduled
times. The status is always as of the last collection time.

Error Hospital Metrics

Error hospital data for the RIB application is queried by a scheduled background
thread and the following information is collected:

Server Status

Total Messages in Error Hospital: Total number of messages in the Error Hospital
for the application

Total Messages in Error Hospital due to dependency: Total number of dependent
messages in the Error Hospital

Message Family: Message family of the family-vice statistics
Adapter class Definition: Adapter information for the message family
Error count: Number of error messages for the message family

Dependency count: Number of the dependent messages for the message family

Server Status (Up Since) is collected at the application startup. When the server is
restarted, this information is reset. The following metrics are collected:

Current CPU: Current CPU utilization for the rib-<app> server
Current Memory: Current Memory utilization for the rib-<app> server
Max Memory: Max Memory utilization for the rib-<app> server

Free Memory: Free Memory utilization for the rib-<app> server

RIB Application Status
Status of the RIB application, e.g., RUNNING, STOPPED etc.

JMS Console Metrics

For details on the metrics collected by the JMS Console, see the Java Messaging Service
Console Guide.

Monitoring Services

A set of web services for third-party software make the RIB monitoring data available
for use. Services are available in rib-<app> instances as well as the central repository.
The rib-<app> services return only the data for the rib-<app>. The central repository
returns consolidated monitoring data from all the rib-<app> instances.

Application Services

These services are hosted on the same JVM as the rib-<app>. For each RIB, there is an
instance of the service that returns the monitoring data of the service.

Monitoring 12-5

Integration Services

Rib Application Monitor Service: This service returns the monitoring data in the local
repository of the rib-<application> in XML format. The schema of the messages is the
same for rib-<app> and TAFRs. For more details on the example of the data, refer the
Appendix A chapter.

WSDL for the RIB Application Monitor Service:
http:/ / <host>:<port>/RibAppMonitorService/RibAppMonitorService? WSDL

Broadcast Monitoring Data Service: This service pushes the data from the local
repository to the central repository. There is a scheduled background thread that
pushes the data.

WSDL for the Broadcast Monitoring Data Service:
http:/ /<host>:<port>/BroadcastMonitoringDataService /BroadcastMonitoringDataSe
rvice?WSDL

Integration Services

RIB Integration Monitor Service: This service returns the consolidated monitoring data
from all the services. The data is returned as XML. The central repository returns the
data as of the last known status of the rib-<app> adapters. A sample XML is shown in
Appendix B.

WSDL:
http:/ / <host>:<port>/RibIntegrationMonitorService/RibIntegrationMonitorService?
WSDL

JMS Console Services

These services are bundled inside the J]MS Console application and are available from
the same managed server where the JMS console is installed. The service is intended to
expose the RIB integration messaging activity by directly probing the underlying AQ
JMS.

JMS Monitor Service: This service provides the runtime information from the RIB's
JMS server. The data returned conforms to jms-runtime-info.xsd. All the statistics
captured in a service response XML are tied to a JMS server. If RIB utilizes multiple
JMS servers, then the JmsMonitorService produces the XML for all the JMS servers
involved. Each JMS Server further contains data related to all topics and subscribers. A
sample response XML is shown in: Sample Data from RIB App Monitoring Service

WSDL:
http:/ /<jms-console-host>:<jms-console-port>/JmsMonitorService /JmsMonitorServic
e?WSDL

Caching and Expiration of Data

The monitoring data is cached in the rib-<app> instances and central repository to
eliminate the timing dependency between data collection and data consumption. If
any of the rib-<app> servers go down, the data already sent to the central integration
repository stays until the cache expiration. The cache expiration is set to 10 minutes. If
the RIB does not refresh the central repository with its monitoring data within the
cache expiration time, the status of the rib-<app> becomes unknown.

12-6 Oracle Retail Integration Bus Implementation Guide

Performance Considerations

Updates to Functional Artifact Deployment

The Functional Artifact application is home to the central RIB Monitoring data
repository. This way there is no additional steps to deploy one more application for
implementing the monitoring capability. There is no additional change for the
monitoring feature, during download and deployment, from the previous

releases.

Turning Off Monitoring

Out of the box implementation of RIB apps will have the monitoring turned on. Rib
Monitoring is controlled by timings logger level. If timings log level is at INFO or
DEBUG, then instrumentation is enabled for adapter events. For other log levels
(ERROR, WARNING), the adapter level events are not captured.

Application level events are collected by scheduled jobs running at predetermined
frequency. Currently, these jobs cannot be turned off.

Troubleshooting the Monitoring Framework

Role of RIC

RIC is the visualization tool for all RIB monitoring data. Monitoring data originates in
the RIB apps, gets collected in Function Artifact Apps, and gets rendered in the RIC. If
any of the links are broken, it is easy to interrogate the component since the data is also
exposed by services. You can call the RIB Application Monitoring service to see the
data in the rib-<app> instances. You can call RIB Integration Monitor Service to review
the consolidated data. You can call the Broadcast Service to push data from rib-<app>
instances to the central repository.

RIC is a visualization tool for Retail Integration. It provides a complete and unified
view of the Oracle Retail Integration System within the business context of the Oracle
Retail applications. The RIC application is enhanced to add RIB monitoring data. In
other words, RIC is the visualization tool for RIB Monitoring data.

To review more information on RIB Monitoring, refer the RIB User Guide.

Role of JMS Console

RIC relies on the J]MS Console application to source the messaging activity of RIB
runtime. RIC derives the JMS console information at compile time and starts polling
the JMS Monitoring Service available on the preconfigured JMS Console application.
All JMS related metrics in RIC are sourced from JMS console.

Performance Considerations

The RIB Monitoring system is designed with several performance considerations.
Typically, the RIB system can handle heavy volumes of retail data flow between
systems with a near real-time response time. Any negative performance impact may
result in substantial performance degradation to the entire system. Hence, the
monitoring framework is designed to have a minimal impact on the core messaging
system. The following design approaches were employed in RIB Monitoring system:

s The collection for message-specific metric data are asynchronous with minimal
impact to the RIB message processing.

Monitoring 12-7

Dependency

= Event data statistics are summarized to hourly counts to reduce chatter and
improve performance.

= Update to the central repository of integration data from rib-<app> instances is on
scheduled frequency to improve performance.

= Application level metrics are collected on a scheduled frequency.

= Repositories are used only for storage. Data is interpreted by client applications
(like RIC).

Dependency

The RIB monitoring framework is designed to combat dependencies - that is, if one
component is down for any reason, the other components are not impacted. The
following measures ensure this behavior:

= If any of the rib-<application> servers go down, to the central integration
repository remains until the cache expiration.

» If the rib-<application> server is bounced, the local repository initializes and the
new data is sent to the central repository at scheduled frequency.

» If the central repository server is bounced, the historical data is lost and new data
is generated by the rib-<application> instances.

Security (Monitoring Services)

The RIB Monitoring services are secured with a username password policy. The
credentials for the services are collected initially when the RIB system is configured.

External Application Integration

The RIB Monitoring system provides the monitoring data via Web services to any third
party client applications. The data is in XML format. The schema of the data is the
same for all the rib-<app> instances. The schema is well-defined and any Web service
consumer with credentials can consume the data.

12-8 Oracle Retail Integration Bus Implementation Guide

13

Integration with Fusion Middleware

RIB is certified on the Oracle Fusion Middleware Application Server. All RIB
publishers, subscribers, and TAFRs are Java EE standard components (E]Bs and
MDBs) that are deployed and managed by the WebLogic Application Server in
managed instances. This means that the RIB can be deployed into an existing Fusion
Middleware architecture without any changes.

All RIB message payloads are fully standard compliant XSD based. All of the XML
payloads are namespace aware and follow the general standards as well as the
conventions that make them compatible with other Oracle Fusion products such ESB
and BPEL. The payload schema definitions (XSDs) are packaged with each release
along with sample messages.

The recommended approach for integration between the RIB and Oracle Fusion
Middleware products is at the JMS topic level. Any standards compliant tool or
product that can interface to the JMS and subscribe and publish messages can be
integrated with the RIB.

There are some key functional requirements that an integrating application must
follow. It must have the ability to do the following:

= Connect to a standard JMS and publish to a topic.
s Create a durable subscriber to a RIB JMS topic
= Set user-defined message properties.

= Encode and decode RIB payloads embedded within the RIB message envelope.

Integration with Fusion Middleware 13-1

General RIB to Fusion Middleware Architecture

General RIB to Fusion Middleware Architecture

RIB Certified
JMS Provider

Oracle Retail Oracle Retail
Warehouse Store
Management Inventory
System Management

The Oracle Fusion Middleware products, such as ESB and BPEL, use a common
standard JMS Adapter. This adapter can be used to connect to the RIB certified JMS
Provider and topics.

The JMS topics that the RIB creates for publication and subscription are detailed in the
Oracle Retail Integration Bus Integration Guide, along with all of the message payloads
for each message family.

The RIB html encodes each message payload and inserts it into the RIB messages
envelope. Each message has a JMS user-defined property called threadValue that is
required to be set on all in-bound messages. In a multi-channel message flow, the
subscriber will need to set the message selector to an appropriate threadValue to
maintain message publication sequencing.

The xml schema definitions for the payloads and the RIB Messages envelopes are
packaged and shipped with the RIB.

See the Oracle Retail Integration Bus Integration Guide for more information.

The RIB JMS topic names and message flows between the RIB adapters for each of the
Oracle Retail applications are defined in the rib-integration-flows.xml file. This file is
the single source of truth that the RIB release uses at configuration and run-time. It is
required to be accessible within each RIB deployment:

http:/ / <server>:<port>/rib-func-artifact/rib-integration-flows.xml. During
installation and configuration, this file is deployed as a part of the functional artifact
war file.

General Process of Integration

The general process for custom integration with the RIB:
s Determine the Message Family of interest (such as Items)

» Use the Oracle Retail Integration Bus Integration Guide to determine the message
payloads and topics involved.

= Configure the JMS Adapter within the tool (ESB/BPEL) to the RIB JMS provider.

s Understand the RIB envelope (RibMessage.xsd) and the message type
relationship.

13-2 Oracle Retail Integration Bus Implementation Guide

General RIB to Fusion Middleware Architecture

= Understand the payload for each message. These are html-encode inside the
RibMessage envelope.

— The RIB XSDs are included in the Oracle Retail Integration Bus Integration Guide
as well as the Function Artifacts war file.

s Understand the Oracle Retail Application API mappings. These are included in
the Oracle Retail Integration Bus Integration Guide. This is important because the
XSDs do not reflect the actual optional /mandatory state of an element. For
historical reasons (to support previous releases), all elements in the XSD that have
been added since RIB version 10.3 have been optional at the message level.

— The Mapping reports are included with the Oracle Retail Integration Bus
Integration Guide.

- Each of the Oracle Retail applications has documentation on the behavior of
the APL

= All RIB messages must have the message property threadValue set by publishing
applications, and in a multi-channel message flow, the subscriber will need to set
the message selector to an appropriate threadValue to maintain message
publication sequencing.

— Understand the relationship between the thread Value and multiple-channels
within the RIB. See "Multiple Channels" in the Oracle Retail Integration Bus
Operations Guide.

= Many of the Message Families have a RIB Component called a TAFR involved.
Understand what a TAFR is and how it works within a message flow. This can be
very involved in some families, and can actually create additional mandatory
elements with a message that may not be obvious. See "Transform, Filtering and
Routing" in the Oracle Retail Integration Bus Operations Guide.

s The Oracle Retail Integration Bus Integration Guide for each family has the general
functional specifications for the TAFRs involved with that family.

s Understand the volume characteristics of a message family. The RIB is designed to
handle retail volumes, so a poorly designed subscriber can have a huge impact on
the JMS. Conversely, a publisher that tries to use the RIB as a bulk transfer
mechanism is also inappropriate.

Configure FWM JMS Adapter to RIB AQ JMS

There is nothing special about configuration of the JMS Adapter in either ESB or BPEL
to now connect to the Resource Provider configured to the RIB AQ JMS. (See Oracle
Service Oriented Architecture Suite tutorials and documentation.) RIB AQ must be
configured as foreign JMS, while RIB is deployed on WebLogic server.

For information about configuring foreign JMS adapter, see the WebLogic®
Application Server Administrator's Guide 12c Release 1 (12.2.1.3.0).

Integration with Fusion Middleware 13-3

General RIB to Fusion Middleware Architecture

13-4 Oracle Retail Integration Bus Implementation Guide

14

RIB Customization/Extension

The customization of an Oracle Retail Application often drives requirements to
customize or extend the messages that flow among the Oracle Retail applications, or to
create new message flows to support new business logic.

This section discusses the customization/extension approaches and best practices
(from a RIB perspective) for extending base messages, creating new messages and
adapters. These are complex topics and should be performed with great care to avoid
making future generally available (GA) releases difficult or impossible to accept.

Retailers often modify retail software either in-house or through third-party system
integrators. The customization and extension of Oracle Retail base products and
messages are not supported by Oracle Retail, including My Oracle Support. This
chapter aims to mitigate the risks of unsupported customization by providing
guidance and references on how to attempt to customize safely and effectively. The
tools and approaches described in this chapter are complex and require a high level of
skill and knowledge of the product. Any issues that may arise with custom flows,
custom APIs or customized message families are the responsibility of the customer
and not Oracle Retail.

Prerequisites for RIB Customization

Customization requires careful consideration and planning for extending the RIB.
Planning helps to avoid re-installation or re-architecture because of operational or
performance problems.

The following prerequisites help to ensure a successful customization of RIB:
= A functional RIB environment without any customizations.

» Familiarity with the Core RIB Concepts, components, and architecture, including
an understanding of all of the following:

- Oracle database triggers, RIB adapters, RIB Message envelope, RIB Message
payloads and the functionality of GETNXT () and CONSUME () stored
procedures.

- Integration message flow paths.

- RIBlife cycle

— Physical and logical requirements and limitations of the RIB components.
— RIB operational considerations.

The tools used in the customization and extension of the RIB are separately
documented. The primary tools are the Retail Functional Artifact Generator and the

RIB Customization/Extension 14-1

Message Family and Message Type Customization

rib-app-builder tools. The message (payload) structure and packaging is covered in the
Oracle Retail Functional Artifacts Guide.

The following documents are referenced throughout this chapter and are required for
the customization effort.

» Oracle Retail Functional Artifacts Guide
» Oracle Retail Functional Artifact Generator Guide

» Oracle Retail Integration Bus Operations Guide

Rules for Customization

Understand the following customization rules.

= Always keep an environment with a base version release to reproduce any base
version issues. Only GA base code and messages are supported.

= Always take a backup of the particular files being modified during the
customization, to allow for reversal of the changes.

= Always use RIB tools such as RDMT, RIHA, the PL/SQL and Java EE
API-simulators (also known as Stubby) and the PLSQL and JavaEE Service
Interface Testers to test the customization changes whenever possible.

= Never modify the existing base flows in rib-integration-flows.xml. Modification
can cause errors in functionality that is difficult to detect. Also, modifications you
make to base flows do not carry over to new releases, nor are they retained when
defect fixes are applied to base code and objects.

= When customizing or extending the RIB messages or flows, all publishing and
subscribing applications participating in the flow must be considered.

s Inscenarios where payload customization or the addition of a new message type
for a particular message family is planned, and the flow contains a TAFR, the
following rules apply:

— TAFRs that do not examine RIB Message types/payloads do not require
modification.

— For TAFRs that examine message type/payloads for filtering or
transformation purposes, the TAFR implementation code must be changed. If
this code is not changed, the messages will fail and land in RIB Error Hospital
tables.

Message Family and Message Type Customization

In the RIB, all messages are categorized by message family and message type. A
message family is specific to one or more Business Objects. It defines all publishable
events occurring on the Business Object(s).

The message type classifies a specific event. For example, the Order message family is
designed for messages regarding purchase orders, and the Vendor message family is
associated with supplier or vendor information.

Typical message types for a message family includes at least one create, modify, and
delete operation.

Note: See "Message Family and Message Types" in Chapter 3.

14-2 Oracle Retail Integration Bus Implementation Guide

Message Family and Message Type Customization

Adding a New Message Type

To add a new message to an existing message family, the simplest approach is to add a
new message type. The first step is to determine and create the payload for the new

message type. The message payload must be created following the guideline and
packaging rules for RIB messages.

Note: See the Oracle Retail Functional Artifact Generator Guide and the
Oracle Retail Functional Artifacts Guide.

Once the desired payload is ready, follow the appropriate steps for the type of
applications in the message family and the message flow.

Message Flows with PL/SQL Applications

The new message type created for an already existing or new message family must be
added in the rib-<app>-plsql-api.xml of the subscribing PL/SQL retail application.

Note: No configuration changes are needed in rib-<plsql-app>
whenever PL/SQL applications publish a new message type to which
no PL/SQL applications subscribe.

The following illustration indicates the files that must be changed inside the RIB

infrastructure during the addition of a new message type when a PL/SQL application
is involved in the message flow.

RIE Functiomal Ariificts

Finsleusd mals

nke i aiker

ezl

rib-privire-fak-
busiess impl jar

rentail pusblic-paioed.
e heans jar

retail-public-padvsd-
Java-bamams beeas jar

Retail Javakk Application
[SIMLRPM AR

Retail LSO Application

k retal pubdec-pasdoed
(RS WS - sib-puhlic.paylead
dainhase-obyeci- jaren-heans. jur
Ly 2
RIB Oxacle Dbjects il g T FLOASEH [T —r—y -
nib-puhlic-paylnad- Application “"|__.|“1,.:”|, .
darahaze-cbjact- .
TWpEsREIR il
o i i
) . riteappon i for JinaEE
CLOHE AP library Applicasion b il
rib-public-payload sib- <appe sdamers cammen,ji
chitabase-xml

library zip{ BMS Crly)

Frrer Feepital Tablis
rib-priveae -l
dattase libeary zip

FESOAITO 5 TP RS

nib-application
bl info. el

sib-appre-iscapiers sl

rib-prablic-ape-

oIl g Ak

rib Sppc adapless
TesdLETes propestiog

|ﬁh"W'P|HI|'Wﬂ‘

pib-=ppe propies

Finee Hospizal Tahles

W
dtabse-libiary, ap

Procedure for Adding a New Message Type for PL/SQL Applications
To add a new message type for PL/SQL applications, complete the following steps.

RIB Customization/Extension 14-3

Message Family and Message Type Customization

1. Add the new message type in rib-<app>-plsql-api.xml where app = rms, rfm, or
rwms, present under <RIB_HOME>/application-assembly-home/rib-<app>
directory.

For example, to add a new message type, DiffGrpFooCre, for the DiffGrp message
family using DiffGrpFooDesc as the payload XML that is subscribed by RWMS
app: Add the message type under the <adaptorClassDef name="DiffGrp_sub"> of
rib-rwms-plsql-api.xml present under <RIB_
HOME?>/application-assembly-home/rib-rwms as below.

> cd <RIB_HOME>/application-assembly-home/rib-rwms
> vi rib-rwms-plsgl-api.xml

<adaptorClassDef name="DiffGrp_sub">

<messageFamily name="DiffGrp">
<storedProc>
<signature>{call RDMSUB_
DIFFGRP.CONSUME (?,?,?,?,?) }</signature>
<useFacilityType>true</useFacilityType>
</storedProc>
<messageType name="DIFFGRPDEL">
<oracleObject>RIB_DiffGrpRef REC</oracleObject>
</messageType>
<messageType name="DIFFGRPDTLCRE">
<oracleObject>RIB_DiffGrpDtlDesc_REC</oracleObject>
</messageType>
<messageType name="DIFFGRPDTLDEL">
<oracleObject>RIB_DiffGrpDtlRef REC</oracleObject>
</messageType>
<messageType name="DIFFGRPHDRCRE">
<oracleObject>RIB_DiffGrpHdrDesc_REC</oracleObject>
</messageType>
<messageType name="DIFFGRPDTLMOD">
<oracleObject>RIB_DiffGrpDtlDesc_REC</oracleObject>
</messageType>
<messageType name="DIFFGRPHDRMOD">
<oracleObject>RIB_DiffGrpHdrDesc_REC</oracleObject>
</messageType>
</messageType name="DIFFGRPFOOCRE">
<oracleObject>RIB_DiffGrpFooDesc_REC</oracleObject>
</messageType>
</messageFamily>
</adaptorClassDef>
2. Create a temporary working directory, customization workarea, under <RIB_
HOME?>/tools-home to perform any customization related tasks.

3. Using the Functional Artifact Generator tool, create
custom-retail-public-payload-java-beans-<version>jar. Copy it to the
customization workarea directory created in the previous step.

> cd <RIB_HOME>/tools-home/customization-workarea
> cp <RIB_HOME>/application-assembly-home/rib-func-artifacts/
retail-public-payload-java-beans-<version>.jar

Note: See the Oracle Retail Functional Artifact Generator Guide for
steps to create custom artifacts.

14-4 Oracle Retail Integration Bus Implementation Guide

Message Family and Message Type Customization

4. Create custom-payload.properties and add the new payload message definitions.
The format of the definition is:

"RIBFAMILY.TYPE=IMPLEMENTATION CLASS NAME"

> vi payload.properties (make changes)
For example, when adding the new message type, DiffGrpFooCre, under the
DiffGrp message family, the custom-payload.properties file is modified as follows:

DIFFGRP.DIFFGRPFOOCRE=com.oracle.retail.integration.custom.bo.extofdiffgrpf
oodesc.v1.ExtOfDiffGrpFooDesc

For this example, DiffGrpFooCre calls the implementation class,
ExtOfDiffGrpFooDesc.

Note: If there is a TAFR involved in the flow, the appropriate
changes must be made to the TAFR to handle the new message types.

5. Add custom-payload.properties to
custom-retail-public-payload-java-beans-<version> jar.

> jar -uvf custom-retail-public-payload-java-beans-<version>.jar
META-INF/custom-payload.properties

6. Copy the updated custom-retail-public-payload-java-beans-<version>.jar to <RIB_
HOME>/application-assembly-home/rib-func-artifacts/ directory.

7. Run the rib-app-builder compiler: Run the rib-app-compiler.sh script from <RIB_
HOME>/application-assembly-home/bin directory to generate/assemble a
rib-<app> and make it ready for deployment.

Note: See the Oracle Retail Integration Bus Operations Guide -
(rib-app-builder tools).

> cd <RIB_HOME>/application-assembly-home/bin
> sh rib-app-compiler.sh

8. Run the rib-app-builder deployer: Run the rib-app-deployer.sh script from <RIB_
HOME?>/deployment-home/bin directory as follows:

> cd <RIB_HOME>/tools-home/customization-workarea

> cp <RIB_HOME>/application-assembly-home/rib-func-artifacts/
retail-public-payload-java-beans-<version>.jar

This deploys the rib-func-artifact-war.

> sh rib-app-deployer.sh -deploy-rib-app-ear rib-<app>
This deploys the rib-<app>. Repeat this step for each rib-<app> in scope for this
integration environment.

Note: The <app> must be an RMS, REM, or RWMS application.

Message Flows with Java EE Applications

The illustration below indicates the files that must be changed inside the RIB
infrastructure during the addition of a new message type when a Java EE application
is involved in the message flow.

RIB Customization/Extension 14-5

Message Family and Message Type Customization

RIB Functional
Artifacts

Payload xsds Change Needed
rib-integration-flows.xmi
rib-private-tafr-business

impl jar

rib-public-payload-java- Retail JavaEE

beans jar T
Application
- rib-public-payload (SIM,RPM,AIP)
Retall PUSGL
Application
(RMS,RWMS) e fib-public-payload-

ml-library.zip java-beans. jar
rib-<app>.ear for PL/ - :

RIB Oracle Objecls SQL Application rib-public-payload-xml- .
ib-public- |l d- samples.zip injectors xmi{subscr
rib-public-payloa ibers only)
bject:
types.zip rib-<app>-
adapters.xml RIB Kernel rib-public-api.jar

J

CLOE AP! library rib-deployment-env- rib-<app>.ear for

tib-public-payload- itz adapterss info.xml JavaEE Application ’m
ldatabasla-xml- resources.properties - : ’
library.zip(RMS rib-application- rib-<app>-adapters.xml

Only) assembly-info.xml fitrpublio-apk:
conf.jar{sample)
rib-<app> properties
rib-inventory-info.xmil

Error Hospital Tables Error Hospital Tables

rib-private-kemel- o = rib-private-kemel-

i 4 rib-<app>-plsql- i ribi-<apns ies i i
database-library.zip il rib-system properties rib-<app=>.properties database-library.zip

resources. properties

rib-<app>-adapters- ‘

Procedure for Adding a New Message Type for Java EE Applications

1. Create a temporary working directory, customization-workarea, under <RIB_
HOME> /tools-home to perform any customization related tasks

2. Go to the customization-workarea directory and create a file called
custom-payload.properties.

> cd <RIB_HOME>/tools-home/customization-workarea
> vi custom-payload.properties

3. Edit the custom-payload.properties created in the step above. The
custom-payload.properties would contain the new payload message definitions.

The format of the definition is:
"RIBFAMILY.TYPE=IMPLEMENTATION CLASS NAME"

> vi custom-payload.properties (make changes)
For example, when adding the new message type, DiffFooCre, under the Diffs
message family, the custom-payload.properties file is modified as follows:

DIFFGRP.DIFFGRPFOOCRE=com.oracle.retail.integration.custom.bo.extofdiffgrpf
oodesc.v1.ExtOfDiffGrpFooDesc

For this example, DiffGrpFooCre calls the implementation class,
ExtOfDiffGrpFooDesc.

4, If this involves a customized payload, then copy over the
custom-retail-public-payload-java-beans-<version> jar generated using Functional
Artifact Generator tool to customization-workarea directory.

> cp
<path-to-the-jar-generated-by-artifact-generator>/custom-retail-public-payload-
java-beans-<version>.jar

For example, :cp <RIB_
HOME>/tools-home/retail-func-artifact-gen/dist/custom-retail-public-payload-jav
a-beans-<version>.jar

and add the custom-payload.properties to the jar

> jar -uvf custom-retail-public-payload-java-beans-<version>.jar
custom-payload.properties

14-6 Oracle Retail Integration Bus Implementation Guide

Message Family and Message Type Customization

Copy the updated custom-retail-public-payload-java-beans-<version>.jar to <RIB_
HOME->/application-assembly-home/rib-func-artifacts/ directory.

For example: cp
<path-to-the-jar-generated-by-artifact-generator>/custom-retail-public-payload-
java-beans-<version>.jar <RIB_
HOME>/application-assembly-home/rib-func-artifacts/

Go to <RIB_HOME?>/ application-assembly-home/conf and edit
rib-application-assembly-info.xml.

> cd <RIB_HOME>/ application-assembly-home/conf

> vi rib-application-assembly-info.xml

Add the following line, as shown in the code example below:

<include
name="payload-lib/custom-retail-public-payload-java-beans-<version>.jar"/>

Note: You don’t have to specify the version of the jar for entry in the
rib-application-assembly-info.xml.

If there is a TAFR involved in the flow, the appropriate changes must
be made to the TAFR to handle the new message types. Refer to
Message Family and Message Type Customization.

Example:

<rib-app id="rib-tafr" type="javaee-app">

<ear>

<classpath>

<classpath refid="rib-app.global.ejb-jar.classpath"/>

<fileset dir=".">

<include name="lib/rib-private-tafr-business-impl.jar"/>

<include name="lib/rib-custom-tafr-business-impl.jar"/>

<include
name="payload-1lib/custom-retail-public-payload-java-beans-<version>.jar"/>
<include name="payload-lib/retail-public-payload-java-beans-<version>.jar"/>
</fileset>

</classpath>

<java-ee-module>

<web-war/>

<ejb-jar>

<classpath>

<classpath refid="rib-app.global.ejb-jar.classpath"/>

<fileset dir=".">

<include name="lib/rib-private-tafr-business-impl.jar"/>

<include name="lib/rib-custom-tafr-business-impl.jar"/>

<include
name="payload-1lib/custom-retail-public-payload-java-beans-<version>.jar"/>
<include name="payload-lib/retail-public-payload-java-beans-<version>.jar"/>
</fileset>

</classpath>

</ejb-jar>

<jms-jca-connector>

<classpath refid="rib-app.global.jms-jca-connector.classpath"/>
</jms-jca-connector>

</java-ee-module>

</ear>

RIB Customization/Extension 14-7

Message Family and Message Type Customization

<resource>
<resource-path refid="rib-app.global.resource-path"/>
<resource-path>
<fileset dir=".">
<include name="rib-tafr.properties"/>
<include name="rib-tafr-adapters.xml"/>
<include name="rib-tafr-adapters-resources.properties"/>
</fileset>
</resource-path>
</resource>
Run the rib-app-compiler: Run the rib-app-compiler.sh script from <RIB_
HOME?>/application-assembly-home/bin directory as follows.

>cd <RIB_HOME>/application-assembly-home/bin

>sh rib-app-compiler.sh

Run the rib-app-builder deployer: Run the rib-app-deployer.sh script from <RIB_
HOME>/deployment-home/bin directory as follows.

> cd <RIB_HOME>/deployment-home/bin
> sh rib-app-deployer.sh -deploy-rib-func-artifact-war
This deploys the rib-func-artifact-war.

> sh rib-app-deployer.sh -deploy-rib-app-ear rib-<app>
This deploys the rib-<app>. Repeat this step for all rib-<app> that is in scope for
this integration environment.

Note: The <app> must be a TAFR, SIM, AIP, or RPM application.

Note: To verify the addition of a new message type for a message
family, see "Verifying the New Message Type".

Creating a New Message Family

In RIB, all messages are categorized by message family and message type. One option
for customizing the RIB is to create a new message family with a new publishing
adapter and a new subscribing adapter.

Additional Rules

If the new message family also corresponds to a topic, it is recommended that the
customization also include the creation of a new topic for that family.

A publishing adapter cannot publish to more than one JMS topic.
A subscribing adapter cannot subscribe to more than one JMS topic.

The first custom message flow must start with 901, with each subsequent custom
message flow id increasing by one from 901. For example, 901, 902, 903, and so on.

Each customized message flow id should be unique and must follow the sequence.

A new message family requires new (or custom) Oracle Retail Application side API(s).
Each API should be written, installed and tested independently, and then connected to
the custom message family flows.

The following illustration indicates the files that require changes during the addition
of a new message family inside the RIB infrastructure:

14-8 Oracle Retail Integration Bus Implementation Guide

Message Family and Message Type Customization

Fetadl FLASOL. Applscaaon
TRMS RWMS)

RIH Orache

et pubhic

darahare-obyect-
TpERZIp

CLOH AT hibeasy
b public- pay koud
duiabere xml
Iy rip S Oy

iy can Row FLSON
Applnms

RIB Famctionsl Artilsons

bty

ity -
e impl jar

; 3
it ol sc-panload-
Jirboam b jor

i

b ~app- adagers

PESOLTOE 3 PrUperines

Ermor Hespital Tabies
L L T
A iy s

il

iy, e e LvaEE
pphoaam

Clunpes Nevdnd

Hetml Jovab b Applicamsas
SN RN A P

e o
commCn. je

nb-spplicaicn ke appre-sdigrers sl
sty infoenl | b prblic. ape.
sl jan samphel
iy i Coppc sty
I SOLITES Properiie s
dnis Fr Hospial Tables
gy vkt b

whitsbaro-libaary Ap

Procedure for Adding a New Message Family
To add a new message family, complete the following steps.

1.

Create a temporary working directory, customization-workarea, under <RIB_

HOME?>/tools-home to perform any customization related tasks.

Copy the rib-func-artifact.war present under <RIB_
HOME?>/application-assembly-home /rib-func-artifacts/ directory into <RIB_
HOME?>/tools-home/ customization-workarea/ directory.

> cd <RIB_HOME>/application-assembly-home/rib-func-artifacts
> cp rib-func-artifact.war <RIB_HOME>/tools-home/ customization-workarea
Extract the rib-integration-flows.xml from the copied rib-func-artifact.war

requiring modification.

> cd <RIB_HOME>/tools-home/ customization-workarea
> jar -xvf rib-func-artifact.war integration/rib-integration-flows.xml

Define the entire flow for the particular message family in
rib-integration-flows.xml present under /integration/ directory of <RIB_
HOME-3> /tools-home/ customization-workarea.

The first custom message flow should always begin with <message-flow
id="901">. Each customized message flow id should be unique and must follow
the sequence. Adding a new customized message flow with a message-flow ID
between 1 and 900 is not recommended, as this range is reserved for adding base
flows in higher versions of RIB.

For example, when adding a new message family, Foo, that flows from the RMS
application to the RWMS application, the flow is defined in
rib-integration-flows.xml as follows:

<message-flow 1d="901">
<node id="rib-rms.Foo_pub" app-name="rib-rms"
adapter-class-def="Foo_pub" type="DbToJms">
<in-db>default</in-db>
<out-topic>etFooFromRMS</out-topic>

RIB Customization/Extension 14-9

Message Family and Message Type Customization

</node>
<node id=" rib-rwms.Foo_sub" app-name=" rib-rwms"
adapter-class-def="Foo_sub" type="JmsToDb">
<in-topic>etFooFromRMS</in-topic>
<out-db>default</out-db>
</node>
</message-flow>

The convention is as follows:

= node id = rib-<app>.<family>_pub or = rib-<app>.<family>_sub or could be
external-system.<family>_pub or external-system.<family>_sub.

= app-name = rib-<app> is the application name. The <app> is one of the
following: rms, rwms, sim, rpm aip, orfm, rob, ocds, 1gf, or tafr-- or
external-system.

» adapter-class-def = <family>_pub or <family>_sub.

s type = DbToJms, JmsToDb, or JmsToJms.

= <in-db> means the source of the message is a database.

= <out-db> means the destination of the message is a database.

= <out-topic> is the topic name to which the message is published.

= <in-topic> is the topic name from which the message is consumed.

5. Replace the previous existing rib-integration-flows.xml with the changed
rib-integration-flows.xml in the /integration/ directory of rib-func-artifact.war
under <RIB_HOME?> /tools-home/customization-workarea/ directory and
generate the rib-func-artifact.war as follows.

> cd <RIB_HOME>/tools-home/customization-workarea
> jar -uvf rib-func-artifact.war integration/rib-integration-flows.xml

6. Create a new publishing adapter, subscribing adapter and TAFR adapter (only if
necessary), depending on the requirement for the new message family as
explained later in this chapter.

Note: See "Adding New Adapters.”

7. Create the message family XSD.

Note: See the Oracle Retail Functional Artifact Guide for information
about adding a new payload.

The newly created XSD should conform to the Meta schema,
IntegrationMetaschema.xsd. The artifact generator tool checks the validity of the
schema before generating any artifacts. If the schema is not compliant with the
IntegrationXmlMetaSchema, the artifact generator fails.

8. Create a new message type.

Note: See "Adding a New Message Type."

14-10 Oracle Retail Integration Bus Implementation Guide

Message Family and Message Type Customization

10.

11.

12.

13.

14.

15.

Edit the custom-payload.properties file present in /conf directory of Rib Artifact
Generator tool installation. The custom-payload.properties contains the new
payload message definitions. The format of the definition is:

"RIBFAMILY.TYPE=IMPLEMENTATION CLASS NAME"
> cd conf
> vi custom-payload.properties (make changes)

For example, when adding a new message type, FooCre, (under the Foo message
family) that calls the implementation class, FooDesc, the
custom-payload.properties file is modified as follows:

FOO.FOOCRE=com.oracle.retail.integration.custom.bo.extoffoodesc.vl.ExtOfFooDesc

Note: See the RibMessages.xsd bundled inside rib-func-artifact.war
for the maximum supported length for message type.

Run the Artifact Generator to generate functional artifacts.

> $GROOVY_HOME/bin/groovy
com.oracle.retail.integration.artifact.generator.GenArtifacts.groovy -g
generateCustom

Upon completion of this step, the generated artifacts are in the appropriate
./output*/dist folders:
custom-retail-public-payload-database-object-types-<version>.jar and
custom-retail-public-payload-java-beans-<version>.jar

Copy these newly generated artifacts from the appropriate ./output*/dist folders
to <RIB_HOME> /application-assembly-home/rib-func-artifacts/ directory:
custom-retail-public-payload-database-object-types-<version>.jar and
custom-retail-public-payload-java-beans-<version> jar.

New entries may be needed in RIB_SETTINGS in the RMS application database to
reference the new message family only if the RMS application is in scope.

Run the rib-app-builder compile: Run the rib-app-compiler.sh script from <RIB_
HOME>/application-assembly-home/bin directory to generate/assemble a
rib-<app> and make it ready for deployment.

> cd <RIB_HOME>/application-assembly-home/bin

> sh rib-app-compiler.sh

Run the rib-app-builder deployer: Run the rib-app-deployer.sh script from <RIB_
HOME?>/deployment-home/bin directory as follows to create the new topic
(etFooFromRMS) in the flow. (The prepare jms step is not destructive, so even if it
is run again it would remove all the topics and recreate them.)

> cd <RIB_HOME>/deployment-home/bin

> sh rib-app-deployer.sh -prepare-jms

Run the rib-app-builder deployer: Run the rib-app-deployer.sh script from <RIB_
HOME>/deployment-home/bin directory as follows.

> cd <RIB_HOME>/deployment-home/bin

> sh rib-app-deployer.sh -deploy-rib-func-artifact-war

This deploys the rib-func-artifact.war.

> sh rib-app-deployer.sh -deploy-rib-app-ear rib-<app>

RIB Customization/Extension 14-11

Adding New Adapters

The rib-<app> is deployed. Repeat this step for each rib-<app> in scope for this
integration environment.

Note: The <app> value must be rms, rwmes, tafr, sim, rfm, aip, rob,
ocds, Igf, or rpm.

Note: To verify the addition of a new message family, see "Verifying
the New Message Family."

Adding New Adapters

A RIB Adapter is a component that coordinates business event (message) generation
and processing with the respective Oracle Retail application interface. Each adapter in
the RIB is created to handle a specific functional interface.

Note: See "Adapters" in Chapter 3.

Adding the Custom Adapter to the rib-integration-flows.xml File

While adding a custom publishing, subscribing or TAFR adapter, it is necessary to add
or modify the message flows to which you are adding a custom adapter in the
rib-integration-flows.xml, update the rib-func-artifact.war, and deploy the updated
rib-func-artifact.war.

Example: Adding a new publisher Foo_pub that publishes a message for a message
family Foo that flows from RMS to RWMS. We need to define the flow in
rib-integration-flows.xml.

<message-flow id="901">
<node id="rib-rms.Foo_pub" app-name="rib-rms"
adapter-class-def="Foo_pub" type="DbToJms">
<in-db>default</in-db>
<out-topic>etFooFromRMS</out-topic>
</node>
<node id=" rib-rwms.Foo_sub" app-name=" rib-rwms"
adapter-class-def="Foo_sub" type="JmsToDb">
<in-topic>etFooFromRMS</in-topic>
<out-db>default</out-db>
</node>
</message-flow>

Procedure for Adding the Flow to the rib-integration-flows.xml File
To add the flow to the rib-integration-flows.xml file, complete the following steps:

Note: Before adding the above flow to the rib-integration-flows.xml
flow, it is recommended that a temporary working directory
("customization-workarea" under <RIB_HOME>/tools-home) be
created. This directory can be used for performing any customization
related tasks.

14-12 Oracle Retail Integration Bus Implementation Guide

Adding New Adapters

1. Copy the rib-func-artifact.war from <RIB_HOME>/
application-assembly-home /rib-func-artifacts to <RIB_
HOME>/tools-home/customization-workarea/ directory.

> cd <RIB_HOME>/ application-assembly-home/rib-func-artifacts
> cp rib-func-artifact-<version>.war <RIB_
HOME>/tools-home/customization-workarea

2. Extract the rib-integration-flows.xml requiring modification from the copied
rib-func-artifact.war as follows:

> jar -xvf rib-func-artifact-<version>.war integration/
rib-integration-flows.xml

3. Add the flow shown above to the rib-integration-flows.xml.

4. Update the rib-func-artifact-<version>.war with the modified
rib-integration-flows.xml.

> jar -uvf rib-func-artifact-<version>.war integration/
rib-integration-flows.xml

5. Copy the rib-func-artifact-<version>.war from <RIB_
HOME?> /tools-home/customization-workarea to <RIB_
HOME?>/application-assembly-home/rib-func-artifacts/ directory.

> cd <RIB_HOME>/tools-home/customization-workarea
> cp rib-func-artifact.war <RIB_HOME>/
application-assembly-home/rib-func-artifacts

6. Run the rib-app-builder compiler: Run the rib-app-compiler.sh script from <RIB_
HOME> /application-assembly-home /bin directory to generate/assemble a
rib-<app> and make it ready for deployment.

> cd <RIB_HOME>/application-assembly-home/bin
> sh rib-app-compiler.sh
7. Run the rib-app-builder deployer: Run the rib-app-deployer.sh script from <RIB_
HOME>/deployment-home/bin directory as follows.
> cd <RIB_HOME>/deployment-home/bin
> sh rib-app-deployer.sh -deploy-rib-func-artifact-war

The rib-func-artifact.war is deployed.

Adding a Publishing Adapter for PL/SQL Applications

Publishing adapters create messages from the information captured by the
applications. These publishing adapters are designed to publish events for a single
message family and are specific to an Oracle Retail application. This section explains
how to create a new publishing adapter for a message family for a PL/SQL application
(such as RMS and RWMS).

The illustration below indicates the files that require changes inside the RIB
infrastructure for the addition of a new publishing adapter for a PL/SQL application:

RIB Customization/Extension 14-13

Adding New Adapters

RIE Functiomal Ariificts

Finsleusd mals

nke i aiker

ezl

rib-privire-fak-
husess impl jar

retal public-paylosd.
Juen-heans jar

metl pubdi:-padoed-

Chanpes Meeded

Retail Javakk Application

Java-biams b jar [SIM, RPM, AP
Betail I'LSCH. Application retml . >
. -pubde-pasdoed
TRMS RWMS) N rib-pashlic-pay kad-
dainhase-obyeci- Javi-heans jor
Ly 2

RUB Oracle Objerts by car Fie F1LSH Tt pubd ae-painad
tibpuhlic-payinad- Application [——

damahase-pbject-

TpesFip T
ackapiers xml RIB K]
L car e JenEE

CLOAE AP library : Tpﬁﬂn’vtuma
rib- puhlic-paylnad rib-<appe adaers. : ’

ahaiabere xml FESDAITOE S JEUPETS

libeary 2ipi BMS Cily) nb-application: rib-cappre-achpers xml
sl info.enl
b= s
ib-=appe penperi X— T <appc=- adapiess
Emex IT-“riI:_ll'I'#iw imfoxml TesaLETe propestios Frie Hoapizal Tahles,

rib-privae-wemd- ke ivate- kel

dattuse library 2ip rib-<zappesplsgl opixml

rib-~ppe propastivs

dtabse-libsary, ap

rib-sysian properlics

Procedure for Adding a Publishing Adapter for PL/SQL Applications
To add a publishing adapter for PL/SQL applications, complete the following steps.

1. Identify the flow to which the new adapter in being added.

2. Define the name of the publishing adapter. It should always follow the naming
convention, RIBFAMILY_pub_ADAPTER INSTANCE NO.

3. Define the particular publishing adapter in rib-<app>-adapters.xml under <RIB_
HOME?>/application-assembly-home /rib-<app>, where <app> refers to either
RMS, RFM, or RWMS. The customer also must mention a custom attribute equal
to "true" whenever a new customized publishing adapter is added.

For example, a new publishing adapter, Foo_pub_1, (for the Foo message family)
is defined in rib-<app>-adapters.xml as follows:

<timer-driven id="Foo_pub_1" initialState="running" timeDelay="10"
custom="true">
<timer-task>
<class name="com.retek.rib.app.getnext.impl.GetNextTimerTaskImpl" />
<property name="maxChannelNumber" value="1" />
</timer-task>
</timer-driven>

4. Define the particular publishing adapter in
rib-<app>-adapters-resources.properties under <RIB_
HOME?>/application-assembly-home/rib-<app>, where <app> refers to either
RMS, ORFM, or RWMS.

Foo_pub_1.name=Foo Publisher, channel 1
Foo_pub_1.desc=Publisher for the Foo family through channel 1.

5. Define the particular publishing adapter in rib-<app>-plsql-api.xml under <RIB_
HOME?>/application-assembly-home /rib-<app>, where <app> refers to either
RMS, ORFM, or RWMS, as shown in the example below.

14-14 Oracle Retail Integration Bus Implementation Guide

Adding New Adapters

Note: The signature of the stored procedure should come from the
corresponding PL/SQL applications.

<adaptorClassDef name="Foo_pub">
<class>com.retek.rib.collab.general.OracleObjectPublisherComponentImpl</class>
<messageFamily name="Foo">
<storedProc>
<signature>{call RMSMFM_FOO.GETNXT(?,?,?,?,?,?,?,?)}</signature>
<storedProc>
</messageFamily>
</adaptorClassDef>

6. Run the rib-app-builder compiler: Run the rib-app-compiler.sh script from <RIB_
HOME>/application-assembly-home /bin directory to generate/assemble a
rib-<app> and make it ready for deployment.

> cd <RIB_HOME>/application-assembly-home/bin
> sh rib-app-compiler.sh
7. Run the rib-app-builder deployer: Run the rib-app-deployer.sh script from <RIB_
HOME?>/deployment-home/bin directory as follows.
> cd <RIB_HOME>/deployment-home/bin
> sh rib-app-deployer.sh -deploy-rib-app-ear rib-<app>
The <app> is deployed.

8. Make the required changes to the rib-integration-flows.xml. See "Adding the
Custom Adapter to the rib-integration-flows.xml File."

Note: To verify the addition of the new adapter, see "Verifying the
New Publishing Adapter."

Adding a Publishing Adapter for Java EE Applications

Publishing adapters create messages from the information captured by the
applications. These publishing adapters are designed to publish events for a single
message family and are specific to an Oracle Retail application. This section explains
how to create a new publishing adapter for a message family for a Java EE application,
such as RPM, AIP, or SIM.

The illustration below indicates the files that require changes inside the RIB
infrastructure for the addition of a new publishing adapter for a Java EE application.

RIB Customization/Extension 14-15

Adding New Adapters

RIE Funetisnal Artifsoes

Fivloasd xaids

Ak il

s il

rib-privire Gt
bustess-impl jar

et pubdic-payoed-
Jarvn-heans jor

mehial pubdi:-pasoad-
S S Retatl Javakk Application
fivarbrams b ar [SIM,RPM,AIF)
Betail 'L/SCH. Applicacion Teial - -
k - il e-papdived b
[RME RWHS) . sib-public-pay load-
ﬂul:’:::;ﬁm. juva-heans jour
RIH Unacke Objects i [T Er—y : i cahe
nib-puhlic-paylnad- smb-saprgies sip ars only
derabase-pbyect- —
rpes2ip rib-<appee
p B
CLOEL AP library theplum- - "h"iﬂp;iﬂf:,,]m”
nibpublic-payload sib-=app - adaprers ;
akatabese.xml TR 5 JEUpE RS
libeary zip! BMS Cly) nb-application: rib-appre-ackaprers .
szl infin. el ribprablic -
el pansamphe)
b i n
A e ritrinvenkmy- e -
Fnihr Il-‘*ril:_ll'l'#;ltw imfxml e Fins Hospital Tahles
rib-priveate Sl k ale-keive -
dakase liteary 2i rib-<appesplsgl api xml T i T
n rib-systemn properlies pib-=ppe propaies databesc-libsary, ap

Procedure for Adding a Publishing Adapter for Java EE Applications
To add a publishing adapter for Java EE applications, complete the following steps.

1. Identify the flow to which the new adapter in being added.

2. Define the name of the publishing adapter. It should always follow the naming
convention, RIBFAMILY_pub_ADAPTER INSTANCE NO.

3. Define the particular publishing adapter in rib-<app>-adapters.xml under <RIB_
HOME?>/application-assembly-home /rib-<app>, where <app> refers to RPM,
AIP, or SIM. The customer also must mention a custom attribute equal to "true"
whenever a new customized publishing adapter is added.

For example, a new publishing adapter, Foo_pub_1, (for the Foo message family)
is defined in rib-<app>-adapters.xml as follows:

<request-driven id=" Foo_pub_1" initialState="notConfigurable" custom="true" />

4. Define the particular publishing adapter in
rib-<app>-adapters-resources.properties under <RIB_
HOME->/application-assembly-home/rib-<app>, where <app> refers to RPM,
AIP, or SIM.

Foo_pub_1.name=Foo Publisher, channel 1
Foo_pub_1.desc=Publisher for the Foo family through channel 1.

5. Run the rib-app-builder compiler: Run the rib-app-compiler.sh script from <RIB_
HOME>/application-assembly-home/bin directory to generate/assemble a
rib-<app> and make it ready for deployment.

> cd <RIB_HOME>/application-assembly-home/bin
> sh rib-app-compiler.sh

6. Run the rib-app-builder deployer: Run the rib-app-deployer.sh script from <RIB_
HOME?>/deployment-home/bin directory as follows.

> cd <RIB_HOME>/deployment-home/bin
> sh rib-app-deployer.sh -deploy-rib-app-ear rib-<app>

14-16 Oracle Retail Integration Bus Implementation Guide

Adding New Adapters

The <app> is deployed.

7. Make the required changes to the rib-integration-flows.xml. See "Adding the
Custom Adapter to the rib-integration-flows.xml File."

Note: To verify the addition of the new adapter, see "Verifying the
New Publishing Adapter."

Adding a Subscriber Adapter for PL/SQL Applications

Subscribing adapters are specific to Oracle Retail and designed to consume all
messages from a specific message family.

The illustration below indicates the files that require changes inside the RIB
infrastructure for the addition of a new subscriber adapter (for a particular message
family) for PL/SQL applications, such as RMS, ORFM, or RWMS.

KIE Funclisal Ariifscts Chanpes Meeded

Fersloasd mails

Nl

M il

rib-privire-tat-
husmes-impljar

neial pubdec-payioed-
jervn-heans. jar

cloik pubdic-penvad
':,I::JE:: r?‘hnl::': Retail Javakk Application
’ TSIV RPM,ATF)

Reetail I'L'SCH. Applicarion tetoa k- public-paload-

TREME BWMEL) ribepashlic-paybad-
datnhase-nbjeci- juren-heans. jar
PP
RIH Onacke Objects i< apgcar for FLOASCH el it
ar i - rud - i - ahe
rib-puhlic-payinad- Application wmilsiergies i "um"r.m‘-“w"“m
deihase-ckject- ikl

WpERzp Tib-=apgpe
w R
-teplovemen-one-
gy ivale-

CLOE AT library it ",:F;lf:::,ljm oFE
nib-public: payload sibe <appe adymers.
chrtabese-xm| TERDUTCE S JEUPErS.
lbeary zip{ RMS Clyt ribeapplicasicns [—— -
¥ m—rﬂ; pr— ib-<appe-achipiers manl T rablic -
conipan sample)
rib-invenkry- s et
thr ”""ﬂ.li.ll'|.#lil."\- imfosml TesOLETE propeties Fined Hosiizal Tahkes
rib-privea: -oemel- X beprivaie- kel
datuase libeary zip tib-<appcs plagl apLeml I - rib-sappes propuris dtabiec-libary, ap

Procedure for Adding a New Subscribing Adapter for a PL/SQL Application

To add a new subscribing adapter for a PL/SQL application, complete the following
steps.

1. Identify the flow to which the new adapter is being added.

2. Define the name of the subscribing adapter. It should always follow the naming
convention, "RIBFAMILY_sub_ADAPTER INSTANCE NO".

3. Define the particular subscribing adapter in rib-<app>-adapters.xml under <RIB_
HOME->/application-assembly-home/rib-<app>, where <app> refers to either
RMS, OREM, or RWMS. The customer also must mention a custom attribute equal
to true whenever a new customized subscribing adapter is added.

For example, a new subscribing adapter, Foo_sub_1, (for the Foo message family)
is defined in rib-<app>-adapters.xml as follows:

RIB Customization/Extension 14-17

Adding New Adapters

<message-driven id="Foo_sub_1" initialState="running" custom="true"/>
Define the particular subscribing adapter in
rib-<app>-adapters-resources.properties under <RIB_
HOME?>/application-assembly-home /rib-<app>, where <app> refers to either
RMS, ORFM, or RWMS.

Foo_sub_1.name=Foo Subscriber, channel 1
Foo_sub_1.desc=Subscriber for the Foo family through channel 1.

Define the particular subscribing adapter in rib-<app>-plsql-api.xml under <RIB_
HOME->/application-assembly-home/rib-<app>, where <app> refers to either
RMS, ORFM or RWMS, as shown in the example below.

Note: The signature of the stored procedure should come from the
corresponding PL/SQL applications.

<adaptorClassDef name="Foo_sub">
<class>com.retek.rib.collab.general.OracleObjectSubscriberComponentImpl</class>
<messageFamily name="Foo">
<storedProc>
<signature>{callRMSSUB_FOO.CONSUME (?,?,?,?) }</signature>
</storedProc>
<messageType name=" FOOCRE">
<oracleObject>RIB_FooDesc_REC</oracleObject>
</messageType>
<messageType name=" FooMOD">
<oracleObject>RIB_FooDesc_REC</oracleObject>
</messageType>
<messageType name=" FooDEL">
<oracleObject>RIB_FooRef_ REC</oracleObject>
</messageType>
</messageFamily>
</adaptorClassDef>

Run the rib-app-builder compiler: Run the rib-app-compiler.sh script from <RIB_
HOME>/application-assembly-home/bin directory to generate/assemble a
rib-<app> and make it ready for deployment.

> cd <RIB_HOME>/application-assembly-home/bin

> sh rib-app-compiler.sh

Run the rib-app-builder deployer: Run the rib-app-deployer.sh script from <RIB_
HOME?>/deployment-home/bin directory as follows.

> cd <RIB_HOME>/deployment-home/bin

> sh rib-app-deployer.sh -deploy-rib-app-ear rib-<app>

The <app> is deployed.

Make the required changes to the rib-integration-flows.xml. See "Adding the
Custom Adapter to the rib-integration-flows.xml File."

Note: To verify the addition of the new adapter, see "Verifying the
New Subscribing Adapter."

14-18 Oracle Retail Integration Bus Implementation Guide

Adding New Adapters

Adding a Subscribing Adapter for Java EE Applications

Subscribing adapters are specific to Oracle Retail and designed to consume all
messages from a specific message family.

The illustration below indicates the files that require changes inside the RIB
infrastructure for the addition of a new subscriber adapter (for a particular message
family) for Java EE applications, such as RPM, AIP, or SIM.

RIE Funetisnal Artifsoes

Fivloasd xaids

bl

s il

rib-privire Gt
buswess-impl.jar

retal pubdic-payoed
Jaren-heans jor

mehal pubdi:-peadoed-

i b Bk Retail Javakk Application
e e b PSS, RPML AR
Betail I'L/SCH. Applicacion - " -
RS RS retash- puchic-pay load: rib-pushlic-pay boad-
[RMERWME) dathase-ckject. F ;
N jarva-heans jar
types.zip
RIH Oracle Objerts Fit-<inpgt- car Tor PO il b - prandiead - . -
tib-puhlic-payinad- Application “":__.,,“I,.,'“I, '"J"""?I‘:TI:"“?""'M
daabase-ckject- rs

rpes2ip Tib-sapge
whipiera x| RIBE Baermel ribi- pibilic.api_jar

rib-appon zar K JinaEE

CLOHL AP libgary Apnlic g it
rib- public- paylad rib-appe - adaprers S \':.:...'..','..
alatabese-xml eSO 5 JEUPE RS
libeary 2ip! S Cly) nb-application: rib-appee-idaers xml -
bl infin.aem ribprablic- -
coiblpan aainijike)
b—cappe peopenics
L ritrimankry- N e
thr Il-“ril:_ll'l'#:tw [EE L] Frror Hospical Tables
nb-prveat sl I ale- ket -
datase liteary 2i rib-<zappesplsgl opi xml Thescppee. i e
n Cb-systom propectics b=~ propaties dhrtabsse-libarg, ap

Procedure for Adding a New Subscribing Adapter for a Java EE Application
1. Identify the flow to which the new adapter is being added.

2. Define the name of the subscribing adapter. It should always follow the naming
convention, RIBFAMILY_sub_ADAPTER INSTANCE NO.

3. Define the particular subscribing adapter in rib-<app>-adapters.xml under <RIB_
HOME> /application-assembly-home/rib-<app>, where <app> refers to SIM,
RPM, or AIP. The customer also must mention a custom attribute equal to "true"
whenever a new customized subscribing adapter is added.

For example, a new subscribing adapter, Foo_sub_1, (for the Foo message family)
is defined in rib-<app>-adapters.xml as follows:

<message-driven id="Foo_sub_1" initialState="running" custom="true"/>

4. Define the particular subscribing adapter in
rib-<app>-adapters-resources.properties under <RIB_
HOME?>/application-assembly-home/rib-<app>, where <app> refers to SIM,
RPM, or AIP.

Foo_sub_1.name=Foo Subscriber, channel 1
Foo_sub_1.desc=Subscriber for the Foo family through channel 1.

5. Run the rib-app-builder compiler: Run the rib-app-compiler.sh script from <RIB_
HOME>/application-assembly-home/bin directory to generate/assemble a
rib-<app> and make it ready for deployment.

> cd <RIB_HOME>/application-assembly-home/bin

RIB Customization/Extension 14-19

Custom TAFR Adapters

> sh rib-app-compiler.sh
6. Run the rib-app-builder deployer: Run the rib-app-deployer.sh script from <RIB_
HOME?>/deployment-home/bin directory as follows.
> cd <RIB_HOME>/deployment-home/bin
> sh rib-app-deployer.sh -deploy-rib-app-ear rib-<app>
The <app> is deployed.

7. Make the required changes to the rib-integration-flows.xml. See "Adding the
Custom Adapter to the rib-integration-flows.xml File."

Note: To verify the addition of the new adapter, see "Verifying the
New Subscribing Adapter."

Custom TAFR Adapters

Transformation Address Filters/Router (TAFR) adapters transform message data and
route messages. Multiple, message family specific TAFRs have already been
implemented. Different TAFR adapters may be active on different message families or
on the same message family depending on the needs of an application. Not all
message families require TAFRs.

TAFR Considerations

The following topics should be considered before writing a customized TAFR
implementation for transformation, filtering or routing.

Transformation

Transformation is handled in the TAFR implementation class. Here is an example
method of a TAFR that handles transformation:

public RibMessage transformRibMessage (RibMessage inMsg) throws TafrException {
// Transforms the incoming RibMessage into an outgoing RibMessage

RibMessage newMsg = transform(inMsg);

return newMsg; }

Filtering Configuration

Filtering configuration involves updating the rib-tafr.properties file with the
appropriate information. The property follows the usual properties naming
convention (name=value). The property used for filtering is:

"for.<tafr name>_tafr.drop-messages-of-types"

Example:

for.ItemsToItemsISO_
tafr.drop-messages-of-types=ISCDimCre, ISCDimMod, ISCDimDel, ItemImageCre, ItemImageMo
d, ItemImageDel, ItemUdaDateCre, ItemUdaDateMod, ItemUdaDateDel, ItemUdaFfCre, ItemUdaFf
Mod, ItemUdaFfDel, ItemUdaLovCre, ItemUdaLovMod, ItemUdaLovDel

This property should be read as, "for ItemsToltemsISO TAFR, drop these message
types.” A comma delimits the message types. If customization is required,
rib-tafr.properties files must be updated for filtering to take place.

14-20 Oracle Retail Integration Bus Implementation Guide

Custom TAFR Adapters

Routing

Routing is enabled by default for TAFRs; the RIB infrastructure handles this routing. If
a TAFR requires routing based on message content, implementation classes override
the following method.

public void routeRibMessage (RibMessage newMsg,MessageRouterIface router) throws

TafrException {
router.addMessageForTopic (eventType, newMsg) ;

}

Adding a New TAFR Adapter

This section explains how to create a new TAFR adapter for a particular message

family.

The illustration below indicates the files that require changes inside the RIB
infrastructure during the addition of a new TAFR adapter to a message family.

KRB Functisnal Artifoces

Payload xsds
[I

libeary 2ipl RMS Calyl

Erar Feepilal Tablis
rib-privi-Genl-
datbase liboary 2ip

ih—cappe penpenice

nb-application:

sl info.enl

-1, car
retal public panivad Retail Javakk Application
Java beams_bese jar it elagtre word [SIMRPALAIF)
Retail 'LSCH. Application . "
(RME RS '”':'l_'ff:{:i‘,ﬂ — sib-puhlic-payload-
peszip li-astapectse jeren-hemns jur
RIB Ovacle Objects vty ear T F1LSCH 1 i el - e
rib-pushiic-pay | nad- Application " :,":::_.”:1';.':',:;. cib-LalE prupertics '"J"‘-""'l‘—l"_\’“l-hfl"h““
duabase-ckyec- (I Giberioge eodd] o
“rpes i fr—
adageers prep—
o ; rib-appon zar K JinaEE
CLOE .leI library . Applicaion bl
nib-public-paylnad rib- <appe adarers cnmi i
alatabese-xml eSO 5 JEUPE RS

rib-appre-ahapers sl

rib-prablic. api-

coiblpan aainijike)
ribeimcnkey- i g araptess
imba il I—"“'”'m‘h propectics Frmer Hospical Tahbes
bpaivate- kel

||i|| “appesplsglapi xml

rib-sysian properlics

ribe~Hppe propativs

dhrtabsse-libarg, ap

Procedure for Adding a New TAFR Adapter
To add a new TAFR adapter, complete the following steps.

1. Identify the flow to which the new adapter is being added.

2. Define the name of the TAFR adapter. It should always follow the naming
convention, RIBFAMILY_tafr ADAPTER INSTANCE NO.

3. Define the corresponding implementation class name the TAFR needs to call.

4. Write the implementation class for the TAFR.

Custom TAFR Implementation

The default implementation of a TAFR implements the following interface in the RIB

infrastructure:

RIB Customization/Extension 14-21

Custom TAFR Adapters

package com.retek.rib.collab.tafr;
import com.retek.rib.domain.ribmessage.bo.RibMessage;

public interface TafrIface {
@return ribMessage that has been modified from the original one
public RibMessage transformRibMessage (RibMessage ribMsgIn) throws TafrException;

/*'k
* Filters message or messages contents accordingly. It is possible that

* this method could filter away the entire message thus returning null

* from this method.
*

* @param ribMsg
* @return ribMessage that may have been modified from the original one
* vpassed in or null.
*/
public RibMessage filterRibMessage (RibMessage ribMsgIn) throws TafrException;

/**

* Routes the message to the appropriate topic for publication.
*

* @param ribMsg RibMessage to be routed to the appropriate topic.
*/
public void routeRibMessage (RibMessage ribMsgIn, MessageRouterIface
router) throws TafrException;

public void processRibMessage (RibMessage ribMsgIn, MessageRouterIface
router) throws TafrException;

}

Procedure for Completing Custom TAFR Implementation
To complete custom TAFR implementation, do the following.

1. First check if the default implementation that comes with the RIB infrastructure is
appropriate.

2. Create a rib-custom-tafr-business-impl-<version> jar containing the customized
implementation class for the specific message family and replace the same under
<RIB_HOME> /application-assembly-home /rib-func-artifacts.

Note: See the My Oracle Support document, "How to Create a
Custom TAFR Implementation."

3. Define the particular TAFR adapter in rib-tafr-adapters.xml under <RIB_
HOME>/application-assembly-home /rib-tafr. The customer must mention a

custom attribute equal to "true" whenever a new customized TAFR adapter is
added.

For example, when adding a new TAFR adapter, Foo_tafr_1, for a Foo message
family, the implementation class written is SampleToSampleWH. It is under the
package com.retek.rib.collab.tafr.bo.impl inside
rib-custom-tafr-business-impl-<version>.jar and should be defined in
rib-tafr-adapters.xml as shown below:

<message-driven id="Foo_tafr_1" initialState="running" tafr-business-
impl="com.retek.rib.collab.tafr.bo.impl.SampleToSampleWH" custom="true" />

14-22 Oracle Retail Integration Bus Implementation Guide

Custom TAFR Adapters

Define the particular TAFR adapter as below in
rib-tafr-adapters-resources.properties under <RIB_
HOME?>/application-assembly-home /rib-tafr:

Foo_tafr_1.name=Foo TAFR, channel 1

Foo_tafr_1.desc=TAFR for the Foo family through channel 1.

Run the rib-app-builder compiler: Run the rib-app-compiler.sh script from <RIB_
HOME>/application-assembly-home /bin directory to generate/assemble a
rib-<app> and make it ready for deployment.

> cd <RIB_HOME>/application-assembly-home/bin

> sh rib-app-compiler.sh

Run the rib-app-builder deployer: Run the rib-app-deployer.sh script from <RIB_
HOME?>/deployment-home/bin directory as follows.

> cd <RIB_HOME>/deployment-home/bin

> sh rib-app-deployer.sh -deploy-rib-app-ear rib-tafr

Make the required changes to the rib-integration-flows.xml. See "Adding the
Custom Adapter to the rib-integration-flows.xml File."

Note: To verify the addition of the new TAFR adapter, see the
section, "Verifying the New TAFR Adapter."

Changing an Existing TAFR Adapter

If there is a need to add more functionality than what is already provided for an
existing TAFR, a class can be added to extend from the original TAFR class.

To change an existing TAFR adapter, complete the following steps.

1.
2

Identify the TAFR to which more functionality should be added.

Define the corresponding implementation class name the TAFR needs to call. This
class should extend from the original TAFR implementation class.

For example, if additional functionality is required for the ASNOutToASNIn_tafr_
1 TAFR, for which the implementation class is
ASNOutToASNInLocFromRibBOImpl, a new class can be written for the
additional functionality that extends from ASNOutToASNInLocFromRibBOImpl.
Also, if additional functionality is needed for the transformation of the message,
call the transform method of the ASNOutToASNInLocFromRibBOImpl class and
write the additional code/logic.

Note: For information on how to write the implementation class.,
see the My Oracle Support document, "How to Create a Custom TAFR
Implementation."

Write the implementation class for the TAFR.

Create a rib-custom-tafr-business-impl-<version>.jar containing the
implementation class and place the same under <RIB_
HOME->/application-assembly-home/rib-func-artifacts.

Note: For more information on how to create the
rib-custom-tafr-business-impl-19.0.0.jar, see the My Oracle Support
document, "How to Create a Custom TAFR Implementation.”

RIB Customization/Extension 14-23

Adding a New rib-<app>

Replace the name of the implementation class with the new class name in the
rib-tafr-adapters.xml as shown below.

For example, if the name of the new class name is
Custom ASNOutToASNInLocFromRibBOImpl, the entry in rib-tafr-adapters.xml
should be:

<message-driven 1d="ASNOutToASNIn_ tafr_ 1" initialState="running"
tafr-business-impl=" com.retek.rib.collab.tafr.bo.impl.
CustomASNOutToASNInLocFromRibBOImpl " custom ="true"/>

Run the rib-app-builder compiler: Run the rib-app-compiler.sh script from <RIB_
HOME?>/application-assembly-home /bin directory to generate/assemble a
rib-<app> and make it ready for deployment.

> cd <RIB_HOME>/application-assembly-home/bin

> sh rib-app-compiler.sh

Run the rib-app-builder deployer: Run the rib-app-deployer.sh script from <RIB_
HOME?>/deployment-home/bin directory as follows.

> cd <RIB_HOME>/deployment-home/bin
> sh rib-app-deployer.sh -deploy-rib-app-ear rib-tafr

Adding a New rib-<app>

One aspect of RIB customization/extension includes adding a new rib-app for a new
application which user wants to integrate using RIB. This new app can be a PLSQL
application, JavaEE application or a SOAP application. This section discusses the
general steps required to add a new rib-app followed by the detailed steps for adding
a rib-app specific to PLSQL Application, JavaEE Application or a SOAP application.

General steps to add a new rib-<app> are as follows:

1.

Create a rib-<app> folder for new application in rib-home/application-assembly
-home. Add rib-<app>-adapters.xml, rib-<app>-adapters-resources.properties,
rib-<app>.properties. If new app is a plsql-app, add rib-<app>-plsql-api.xml too.

Update rib-<app>-adapters.xml with information about subscriber, publisher and
hospital adapters.

Update rib-<app>-adapters-resources.properties with name, description of
subscribers, publishers and hospital retriers.

Update rib-application-assembly-info.xml with new rib-app information under
<rib-applications>.

rib-<app>.properties file cannot be left empty, add some text (example below) in
case nothing specific to rib-<app> in properties file:

HHHHHHE BB
rib-<app> application specific properties go here.#

All properties have default values, add the

property here only if the default value does not

suit your environment.
HHHHHHHHHHHHHHHHHHHH AR

Update the various sections of the deployment-home/conf/rib-deployment-
env-info.xml file to include information about the new rib-<app>.

Update the rib-integration-flows.xml file to add the publisher and subscriber flow
information for the new rib-app.

14-24 Oracle Retail Integration Bus Implementation Guide

Adding a New rib-<app>

7. Follow RIB installation defined lifecycle steps to complete compilation and
deployment of rib-<app>.ear

Adding a new PLSQL rib-<app>

Following section lists down the detailed steps required to create a new PLSQL
rib-<app> corresponding to a PLSQL application named foo. The application name
(foo) is for sample purposes only. The new rib application will be named rib-foo, (i.e.
rib-<app> where <app> = foo). Subscribing adapter will be for family Banner and will
subscribe from jms topic etBannerFromRMS. The publishing adapter will be for family
CurRate and will publish to jms topic etEXTCurRate.

The publishing adapter and subscribing adapter and business objects that are used,
while actual, are illustrative only and chosen for their simplicity in the example and
should be replaced with the actual ones that match the business case.

Note: The application (foo.ear) that integrates with the rib-foo is
designed and developed to satisfy whatever business requirements
have driven the need for a new rib-<app> and is beyond the scope of
this document.

Note: It is assumed that rib-home is already in place and working
properly without the rib-foo application.

The following are the steps to create a new rib-foo.ear application that can
communicate with a new application (called foo.ear in this example) designed to meet
the business objective.

1. Go to rib-home and create a directory rib-foo under application-assembly-home.

> cd rib-home
> mkdir application-assembly-home/rib-foo

2. Addrib-foo-adapters.xml, rib-foo-adapters-resources.properties, rib-foo.properties
and rib-foo-plsql-api.xml to rib-foo folder created above.

> touch application-assembly-home/rib-foo/rib-foo-adapters.xml
application-assembly-home/rib-foo/rib-foo-adapters-resources.properties
application-assembly-home/rib-foo/rib-foo.properties
application-assembly-home/rib-foo/rib-foo-plsgl-api.xml

3. Add rib adapter (subscriber, publisher and hospital) details to the file
application-assembly-home/rib-foo/rib-foo-adapters.xml.

<?xml version="1.0" encoding="UTF-8"?>
<rib-adapters xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xs1 :noNamespaceSchemalL.ocation="rib-adapters.xsd" appName="rib-foo">
<subscribers>
<message-driven id="Banner_sub_1" initialState="running" />
</subscribers>
<publishers>
<timer-driven id="CurRate_pub_1" initialState="running" timeDelay="10" >
<timer-task>
<class name="com.retek.rib.app.getnext.impl.GetNextTimerTaskImpl" />
<property name="maxChannelNumber" value="1" />
</timer-task>
</timer-driven>

RIB Customization/Extension 14-25

Adding a New rib-<app>

</publishers>
<hospitals>
<timer-driven id="sub_hosp_0" initialState="running" timeDelay="10" >
<timer-task>
<class name="com.retek.rib.j2ee.ErrorHospitalRetryTimerTask"/>
<property name="reasonCode" value="SUB" />
</timer-task>
</timer-driven>
<timer-driven id="jms_hosp_0" initialState="running" timeDelay="10" >
<timer-task>
<class name="com.retek.rib.j2ee.ErrorHospitalRetryTimerTask"/>
<property name="reasonCode" value="JMS"/>
</timer-task>
</timer-driven>
</hospitals>
</rib-adapters>

Add publisher, subscriber and hospital retrier details to the file
application-assembly-home /rib-foo/rib-foo-adapters-resources.properties.

#

If this changes, ManagedAdaptersResourcesPropertiesTest will need to
change accordingly.

#

sub_all.name=Subscribers

sub_all.desc=Manages all subscribers at the same time.
Banner_sub_1.name=Banner Subscriber, channel 1
Banner_sub_1.desc=Subscriber for the Banner family through channel 1.
CurRate_pub_1.name=CurRate Publisher, channel 1
CurRate_pub_1.desc=Publisher for the CurRate family through channel 1.
hosp_all.name=Hospital Retriers

hosp_all.desc=Manages all hospital retriers at the same time.
sub_hosp_0.name=SUB Hospital Retry

sub_hosp_0.desc=Inject messages into from the Error Hospital.
jms_hosp_0.name=JMS Hospital Retry

jms_hosp_0.desc=Re-publish messages from to JMS after JMS is brought back up.

Put the following xml content into rib-foo-plsql-api.xml

<?xml version="1.0" encoding="UTF-8"?>

<rib-app-plsgl-api
xmlns="http://www.oracle.com/retail/integration/rib/rib-app-plsgl-api"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:noNamespaceSchemalocation="http://www.oracle.com/retail/integration/rib/rib
-app-plsgl-api.xsd">

<adaptorClassDef name="Banner_sub">
<class>com.retek.rib.collab.general.CLOBSubscriberComponentImpl</class>
<messageFamily name="Banner">

<storedProc>

<signature>{call RMSSUB_BANNERCRE.CONSUME(?, ?, ?)}</signature>
</storedProc>

</messageFamily>

</adaptorClassDef>

<adaptorClassDef name="CurRate_pub">
<class>com.retek.rib.collab.general.CLOBPublisherComponentImpl</class>
<messageFamily name="CURRATE">

<storedProc>

<signature>{call RMSMFM_CURRATE.GETNXT(?,?,?,?,?,?)}</signature>
<outParameter index="5">

<type>

<value>NUMERIC</value>

14-26 Oracle Retail Integration Bus Implementation Guide

Adding a New rib-<app>

</type>

<!--NUMERIC, VARCHAR, INTEGER, FLOAT, DATE -->
<toJavaField>ID</toJavaField>

</outParameter>

<outParameter index="6">

<type>

<value>NUMERIC</value>

</type>

<!--NUMERIC, VARCHAR, INTEGER, FLOAT, DATE -->
</outParameter>

</storedProc>

</messageFamily>

</adaptorClassDef>

</rib-app-plsgl-api>

Update rib-application-assembly-info.xml under
application-assembly-home/conf. Near the end (before </rib-applications>),
append the following section to
application-assembly-home/conf/rib-application-assembly-info.xml.

<rib-app id="rib-foo" type="plsgl-app">
<ear>
<classpath refid="rib-app.global.ear.classpath" />
<java-ee-module>
<web-war />
<ejb-jar>
<classpath refid="rib-app.global.ejb-jar.classpath" />
</ejb-jar>
<jms-jca-connector>
<classpath
refid="rib-app.global.jms-jca-connector.classpath" />
</jms-jca-connector>
</java-ee-module>
</ear>
<resource>
<resource-path refid="rib-app.global.resource-path" />
<resource-path>
<fileset dir=".">
<include name="retail/remote_service_locator_info_
ribserver.xml"

/>

<include name="rib-foo.properties" />

<include name="rib-foo-adapters.xml" />

<include name="rib-foo-adapters-resources.properties"
/>

<include name="rib-foo-plsgl-api.xml" />

</fileset>
</resource-path>
</resource>

</rib-app>
Update the various sections of the
deployment-home/conf/rib-deployment-env-info.xml file.
a. Update <app-in-scope-for-integration> section to add the new application.
Add the following XML section under <app-in-scope-for-integration>.

<app id="foo" type="plsql-app"/>

RIB Customization/Extension 14-27

Adding a New rib-<app>

b. Define the WebLogic Server information for the foo application. Add the
following XML section under the <weblogic> (before </weblogic>). Refer to
the Oracle Retail Integration Bus Installation Guide for details about the WLS
path and ports.

<wls id="rib-foo-wlsl">
<wls-instance-name>rib-foo-server</wls-instance-name>
<wls-instance-home>webadmin@ribhost.example.com://ul0l/rrtswls/Oracle/Middle
ware/user_projects/domains/base_
domain/servers/rib-foo-server</wls-instance-home>
<wls-listen-port protocol="http">7003</wls-listen-port>
<wls-user-alias>rib-foo-wls-user-alias</wls-user-alias>
</wls>

c. Add the following XML section under the <rib-applications> (before
</rib-applications>) section. In the jndi/url xml tag section, point it to the
location where foo.ear (not rib-foo.ear) is deployed. Refer to Oracle Retail
Integration Bus Installation Guide for details.

<rib-app id="rib-foo" type="plsgl-app">
<deploy-in refid="rib-foo-wlsl" />
<rib-admin-gui>
<web-app-url>http://ribhost.example.com:7003/rib-foo-appserver-gui/index.js
p</web-app-url>
<web-app-user-alias>rib-foo_rib-admin-gui_
web-app-user-alias</web-app-user-alias>
</rib-admin-gui>
<error-hospital-database>
<hosp-url>jdbc:oracle:thin:@hospdbhost.example.com:1521:0rcl</hosp-url>
<hosp-user-alias>rib-foo_error-hospital-database_
user-name-alias</hosp-user-alias>
</error-hospital-database>
<app-database>
<app-db-url>jdbc:oracle:thin:@hospdbhost.example.com:1521:0rcl</app-db-url>
<app-db-user-alias>rib-foo_app-database_
user-name-alias</app-db-user-alias>
</app-database>
<notifications>
<email>
<email-server-host>mail.example.com</email-server-host>
<email-server-port>25</email-server-port>
<from-address>admin@example.com</from-address>
<to-address-list>admin@example.com</to-address-1list>
</email>
<jmx/>
</notifications>
<app id="foo" type="plsgl-app">
<jndi-not-applicable/>
</app>
</rib-app>

8. Update the rib-integration-flows.xml to add the publisher and subscriber flow
information for the app.

a. Create a customization-workarea directory under rib-home, extract
rib-integration-flows.xml present in rib-func-artifact-<version>.war.

> mkdir customization-workarea

> cd customization-workarea

14-28 Oracle Retail Integration Bus Implementation Guide

Adding a New rib-<app>

10.

11.

>jar xf ../
application-assembly-home /rib-func-artifacts/rib-func-artifact-<version>.war
integration/rib-integration-flows.xml

b. Edit integration/rib-integration-flows.xml to add message flow details for
new app (rib-foo).

a. Add the following xml section as the last node of message-flow ID
number 2. Search for Banner to take you to the right message-flow.

<node id="rib-foo.Banner_sub" app-name="rib-foo"
adapter-class-def="Banner_sub" type="JmsToDb">
<in-topic>etBannerFromRMS</in-topic>
<out-db>default</out-db>
</node>

b. Add the following XML section as the first node of message-flow ID
number 40. Search for CurRate to take you to the right message-flow.

<node id="rib-foo.CurRate_pub" app-name="rib-foo"
adapter-class-def="CurRate_pub" type="DbToJms">

<in-db>default</in-db>

<out-topic>etEXTCurRate</out-topic>

</node>

¢. Add updated rib-integration-flows.xml to rib-func-artifact-<version>.war.

> jar uvf
../application-assembly-home/rib-func-artifacts/rib-func-artifact-<version>
.war integration/rib-integration-flows.xml

d. Cleanup and remove the temporary working directory
>cd ..

> rm -rf customization-workarea

Run the rib-app-builder compiler: Run the rib-app-builder script from <RIB_
HOME>/application-assembly-home /bin directory to generate/assemble a
rib-<app> and make it ready for deployment.

> cd <RIB_HOME>/application-assembly-home/bin

>sh rib-app-compiler.sh -setup-security-credential

Run the rib-app-builder deployer: Run the rib-app-deployer.sh script from <RIB_
HOME?>/deployment-home/bin directory as follows to register the new
publishing and subscribing adapters in the flow. (The prepare jms step is not
destructive, so even if it is run again it will just remove all the topics and recreate
them.)

> cd <RIB_HOME>/deployment-home/bin
> sh rib-app-deployer.sh -prepare-jms

Run the rib-app-builder deployer: Run the rib-app-deployer script from <RIB_
HOME?>/deployment-home/bin directory as follows:

> cd <RIB_HOME>/deployment-home/bin
> sh rib-app-deployer.sh -deploy-rib-func-artifact-war

This deploys the rib-func-artifact-war

> sh rib-app-deployer.sh -deploy-rib-app-ear rib-foo

This deploys the new javaee rib-<app>.

RIB Customization/Extension 14-29

Adding a New rib-<app>

Adding a New JavaEE rib-<app>

Following section lists down the detailed steps required to create a new JavaEE
rib-<app> corresponding to a JavaEE application named foo. The application name
(foo) is for sample purposes only. The new rib application will be named rib-foo, (i.e.
rib-<app> where <app> = foo). Subscribing adapter will be for family Banner and will
subscribe from jms topic etBannerFromRMS. The publishing adapter will be for family
CurRate and will publish to jms topic etEXTCurRate.

The publishing adapter and subscribing adapter and business objects that are used,
while actual, are illustrative only and chosen for their simplicity in the example and
should be replaced with the actual ones that match the business case.

Note: The application (foo.ear) that integrates with rib-foo is
designed and developed to satisfy whatever business requirements
have driven the need for a new rib-<app> and is beyond the scope of
this document.

Note: It is assumed that rib-home is already in place and working
properly without the rib-foo application.

The following are the steps to create a new rib-foo.ear application that can
communicate with a new application (called foo.ear in this example). Design to meet
the business objective.

1. Go to rib-home and create a directory rib-foo under application-assembly-home.

> cd rib-home
> mkdir application-assembly-home/rib-foo

2. Add rib-foo-adapters.xml, rib-foo-adapters-resources.properties and
rib-foo.properties to rib-foo folder created above.

> touch application-assembly-home/rib-foo/rib-foo-adapters.xml
application-assembly-home/rib-foo/rib-foo-adapters-resources.properties
application-assembly-home/rib-foo/rib-foo.properties

3. Add rib adapter (subscriber, publisher and hospital) details to the file
application-assembly-home /rib-foo/rib-foo-adapters.xml.

<?xml version="1.0" encoding="UTF-8"?>
<rib-adapters xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:noNamespaceSchemalLocation="rib-adapters.xsd" appName="rib-foo">
<subscribers>
<message-driven id="Banner_sub_1" initialState="running" />
</subscribers>
<publishers>
<request-driven id="CurRate_pub_1" initialState="notConfigurable" />
</publishers>

<hospitals>
<timer-driven id="sub_hosp_0" initialState="running" timeDelay="10" >
<timer-task>
<class name="com.retek.rib.j2ee.ErrorHospitalRetryTimerTask"/>
<property name="reasonCode" value="SUB" />
</timer-task>
</timer-driven>

14-30 Oracle Retail Integration Bus Implementation Guide

Adding a New rib-<app>

<timer-driven id="jms_hosp_0" initialState="running" timeDelay="10" >
<timer-task>
<class name="com.retek.rib.j2ee.ErrorHospitalRetryTimerTask"/>
<property name="reasonCode" value="JMS"/>
</timer-task>
</timer-driven>
</hospitals>
</rib-adapters>

Add publisher, subscriber and hospital retrier details to the file
application-assembly-home /rib-foo/rib-foo-adapters-resources.properties.

#

If this changes, ManagedAdaptersResourcesPropertiesTest will need to
change accordingly.

#

sub_all.name=Subscribers

sub_all.desc=Manages all subscribers at the same time.

Banner_ sub_1.name=Banner Subscriber, channel 1
Banner_sub_1l.desc=Subscriber for the Banner family through channel 1.
CurRate_pub_1.name=CurRate Publisher, channel 1
CurRate_pub_1l.desc=Publisher for the CurRate family through channel 1.
hosp_all.name=Hospital Retriers

hosp_all.desc=Manages all hospital retriers at the same time.
sub_hosp_0.name=SUB Hospital Retry

sub_hosp_0.desc=Inject messages into from the Error Hospital.
jms_hosp_0.name=JMS Hospital Retry

jms_hosp_0.desc=Re-publish messages from to JMS after JMS is brought back up.

rib-<app>.properties file cannot be left empty, add some text (example below) in
case nothing specific to rib-<app> to set in properties file:

HHHHHHHHHHR AR
rib-<app> application specific properties go here.

All properties have default values, add the

property here only if the default value does not

suit your environment.
AR

Update rib-application-assembly-info.xml under
application-assembly-home/conf. Near the end (before </rib-applications>),
append the following section to
application-assembly-home/conf/rib-application-assembly-info.xml.

<rib-app id="rib-foo" type="javaee-app">
<ear>
<classpath refid="rib-app.global.ear.classpath" />
<java-ee-module>
<web-war />
<ejb-jar>
<classpath refid="rib-app.global.ejb-jar.classpath" />
</ejb-jar>
<jms-jca-connector>
<classpath
refid="rib-app.global.jms-jca-connector.classpath" />
</jms-jca-connector>
</java-ee-module>

RIB Customization/Extension 14-31

Adding a New rib-<app>

</ear>
<resource>
<resource-path refid="rib-app.global.resource-path" />
<resource-path>
<fileset dir=".">
<include name="retail/remote_service_locator_info_
ribserver.xml"

/>

<include name="rib-foo.properties" />

<include name="rib-foo-adapters.xml" />

<include name="rib-foo-adapters-resources.properties"
/>

</fileset>
</resource-path>
</resource>

</rib-app>
6. Update the various sections of the
deployment-home/conf/rib-deployment-env-info.xml file.

a. Update <app-in-scope-for-integration> section to add the new application.
Add the following XML section under <app-in-scope-for-integration>.

<app 1id="foo" type="javaee-app"/>

b. Define the WebLogic Server information for the foo application. Add the
following XML section under the <weblogic> (before </weblogic>). Refer to
the Oracle Retail Integration Bus Installation Guide for details about the WLS
path and ports.

<wls id="rib-foo-wlsl">
<wls-instance-name>rib-foo-server</wls-instance-name>

<wls-instance-home>user@ribhost.example.com://ull/rrtswls/Oracle/Middleware
/user_projects/domains/base_
domain/servers/rib-foo-server</wls-instance-home>
<wls-listen-port protocol="http">7003</wls-listen-port>
<wls-user-alias>rib-foo-wls-user-alias</wls-user-alias>
</wls>

c. Add the following XML section under the <rib-applications> (before
</rib-applications>) section. In the jndi/url xml tag section, point it to the
location where foo.ear (not rib-foo.ear) is deployed. Refer to Oracle Retail
Integration Bus Installation Guide for details.

<rib-app id="rib-foo" type="javaee-app">
<deploy-in refid="rib-foo-wlsl"/>
<rib-admin-gui>
<web-app-url>http://ribhost.example.com:7003/rib-foo-appserver-gui/index.js
p</web-app-url>
<web-app-user-alias>
rib-foo_rib-admin-gui_web-app-user-alias
</web-app-user-alias>
</rib-admin-gui>
<error-hospital-database>
<hosp-url>
jdbc:oracle:thin:@hospdbhost.example.com:1521:0rcl</hosp-url>
<hosp-user-alias>rib-foo_error-hospital-database_
user-name-alias</hosp-user-alias>
</error-hospital-database>
<app-database-not-applicable/>

14-32 Oracle Retail Integration Bus Implementation Guide

Adding a New rib-<app>

<notifications>
<email>
<email-server-host>mail.example.com</email-server-host>
<email-server-port>25</email-server-port>
<from-address>admin@example.com</from-address>
<to-address-list>admin@example.com</to-address-list>

</email>

<jmx/>

</notifications>

<app id="foo" type="javaee-app">
<jndi>

<url>t3://foohost.example.com:7002/foo</url>
<factory>weblogic.jndi.WLInitialContextFactory</factory>
<user-alias>foo_jndi_user-name-alias</user-alias>
</jndi>
</app>

</rib-app>
Update the rib-integration-flows.xml to add the publisher and subscriber flow
information for the app.

a. Create a customization-workarea directory under rib-home, extract
rib-integration-flows.xml present in rib-func-artifact-<version>.war.

> mkdir customization-workarea

> cd customization-workarea

> jar xf ../ application-assembly-home /rib-func-artifacts/rib-func-artifact.war
integration/rib-integration-flows.xml

b. Edit integration/rib-integration-flows.xml to add message flow details for
new app (rib-foo).

a. Add the following xml section as the last node of message-flow ID
number 2. Search for Banner to take you to the right message-flow.

<node id="rib-foo.Banner_sub" app-name="rib-foo"
adapter-class-def="Banner_sub" type="JmsToDb">
<in-topic>etBannerFromRMS</in-topic>
<out-db>default</out-db>

</node>

b. Add the following XML section as the first node of message-flow ID
number 40. Search for CurRate to take you to the right message-flow.

<node id="rib-foo.CurRate_pub" app-name="rib-foo"
adapter-class-def="CurRate_pub" type="DbToJms">

<in-db>default</in-db>

<out-topic>etEXTCurRate</out-topic>

</node>

c. Add updated rib-integration-flows.xml to rib-func-artifact-<version>.war.

> jar uvf
../application-assembly-home/rib-func-artifacts/rib-func-artifact-<version>
.war integration/rib-integration-flows.xml

d. Cleanup and remove the temporary working directory

>cd ..
> rm -rf customization-workarea

RIB Customization/Extension 14-33

Adding a New rib-<app>

8. Run the rib-app-builder compiler: Run the rib-app-builder script from <RIB_
HOME>/application-assembly-home/bin directory to generate/assemble a
rib-<app> and make it ready for deployment.

> cd <RIB_HOME>/application-assembly-home/bin
> sh rib-app-compiler.sh -setup-security-credential

9. Run the rib-app-builder deployer: Run the rib-app-deployer.sh script from <RIB_
HOME?>/deployment-home/bin directory as follows to register the new
publishing and subscribing adapters in the flow.

> cd <RIB_HOME>/deployment-home/bin
> sh rib-app-deployer.sh -prepare-jms

10. Run the rib-app-builder deployer: Run the rib-app-deployer script from <RIB_
HOME>/deployment-home/bin directory as follows:

> cd <RIB_HOME>/deployment-home/bin

> sh rib-app-deployer.sh -deploy-rib-func-artifact-war
This deploys the rib-func-artifact-war

> sh rib-app-deployer.sh -deploy-rib-app-ear rib-foo
This deploys the new javaee rib-<app>.

Adding a New SOAP rib-<app>

Following section lists down the detailed steps required to create a new SOAP
rib-<app> corresponding to a SOAP application named foo. The application name
(foo) is for sample purposes only. The new rib application will be named rib-foo, (i.e.
rib-<app> where <app> = foo). Subscribing adapter will be for family Receiving and
will subscribe from jms topic etReceiving. The publishing adapter will be for family
FulfilOrder and will publish to jms topic etFulfillOrder.

The publishing adapter and subscribing adapter and business objects that are used,
while actual, are illustrative only and chosen for their simplicity in the example and
should be replaced with the actual ones that match the business case.

Note: The application (foo.ear) that integrates with the rib-foo is
designed and developed to satisfy whatever business requirements
have driven the need for a new rib-<app> and is beyond the scope of
this document.

Note: It is assumed that rib-home is already in place and working
properly without the rib-foo application.

The following are the steps to create a new rib-foo.ear application that can
communicate with a new application (called foo.ear in this example) designed to meet
the business objective.

1. Go to rib-home and create a directory rib-foo under application-assembly-home.

> cd rib-home
> mkdir application-assembly-home/rib-foo

2. Add rib-foo-adapters.xml, rib-foo-adapters-resources.properties and
rib-foo.properties to rib-foo folder created above.

> touch application-assembly-home/rib-foo/rib-foo-adapters.xml

14-34 Oracle Retail Integration Bus Implementation Guide

Adding a New rib-<app>

application-assembly-home/rib-foo/rib-foo-adapters-resources.properties
application-assembly-home/rib-foo/rib-foo.properties
application-assembly-home/rib-foo/rib-foo-plsgl-api.xml

Add rib adapter (subscriber, publisher and hospital) details to the file
application-assembly-home/rib-foo/rib-foo-adapters.xml.

<?xml version="1.0" encoding="UTF-8"?>
<rib-adapters xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xs1:noNamespaceSchemalLocation="rib-adapters.xsd" appName="rib-foo">
<subscribers>
<message-driven id="Receiving_sub_1" initialState="running" />
</subscribers>
<publishers>
<request-driven id="FulfilOrd pub_1" initialState="notConfigurable" />
</publishers>
<hospitals>
<timer-driven id="sub_hosp_0" initialState="running" timeDelay="10" >
<timer-task>
<class name="com.retek.rib.j2ee.ErrorHospitalRetryTimerTask"/>
<property name="reasonCode" value="SUB" />
</timer-task>
</timer-driven>
<timer-driven id="jms_hosp_0" initialState="running" timeDelay="10" >
<timer-task>
<class name="com.retek.rib.j2ee.ErrorHospitalRetryTimerTask"/>
<property name="reasonCode" value="JMS"/>
</timer-task>
</timer-driven>
</hospitals>
</rib-adapters>

Add publisher, subscriber and hospital retrier details to the file
application-assembly-home/rib-foo/rib-foo-adapters-resources.properties.

#

If this changes, ManagedAdaptersResourcesPropertiesTest will need to

change accordingly.

#

sub_all.name=Subscribers

sub_all.desc=Manages all subscribers at the same time.
Receiving_sub_1.name=Receiving Subscriber, channel 1
Receiving_sub_1.desc=Subscriber for the Receiving family through channel 1.
FulfilOrd_pub_1.name=FulfillOrder Publisher, channel 1
FulfilOrd_pub_1.desc=Publisher for the FulfilOrd family through channel 1.
hosp_all.name=Hospital Retriers

hosp_all.desc=Manages all hospital retriers at the same time.
sub_hosp_0.name=SUB Hospital Retry

sub_hosp_0.desc=Inject messages into from the Error Hospital.
jms_hosp_0.name=JMS Hospital Retry

jms_hosp_0.desc=Re-publish messages from to JMS after JMS is brought back up.

Update rib-application-assembly-info.xml under
application-assembly-home/conf. Near the end (before </rib-applications>),
append the following section to
application-assembly-home/conf/rib-application-assembly-info.xml.

<rib-app id="rib-foo" type="soap-app">
<ear>
<classpath refid="rib-app.global.ear.classpath" />
<java-ee-module>

RIB Customization/Extension 14-35

Adding a New rib-<app>

<web-war />
<ejb-jar>
<classpath refid="rib-app.global.ejb-jar.classpath" />
</ejb-jar>
<jms-jca-connector>
<classpath
refid="rib-app.global.jms-jca-connector.classpath" />
</jms-jca-connector>
</java-ee-module>
</ear>
<resource>
<resource-path refid="rib-app.global.resource-path" />
<resource-path>
<fileset dir=".">
<include name="retail/remote_service_locator_info_

ribserver.xml"

/>

<include name="rib-foo.properties" />

<include name="rib-foo-adapters.xml" />

<include name="rib-foo-adapters-resources.properties"
/>

</fileset>
</resource-path>
</resource>

</rib-app>
rib-<app>.properties file cannot be left empty, add some text (example below) in
case nothing specific to rib-<app> to set in properties file

AR
rib-<app> application specific properties go here.

All properties have default values, add the

property here only if the default value does not

suit your environment.
AR

6. Update the various sections of the
deployment-home/conf/rib-deployment-env-info.xml file.

a. Update <app-in-scope-for-integration> section to add the new application.
Add the following XML section under <app-in-scope-for-integration>

<app id="foo" type="soap-app"/>

b. Define the WebLogic Server information for the foo application. Add the
following XML section under the <weblogic> (before </weblogic>). Refer to
the Oracle Retail Integration Bus Installation Guide for details about the WLS
path and ports.

<wls id="rib-foo-wlsl">
<wls-instance-name>rib-foo-server</wls-instance-name>
<wls-instance-home>webadmin@ribhost.example.com://ul0l/rrtswls/Oracle/Middle
ware/user_projects/domains/base_
domain/servers/rib-foo-server</wls-instance-home>
<wls-listen-port protocol="http">7003</wls-listen-port>
<wls-user-alias>rib-foo-wls-user-alias</wls-user-alias>
</wls>

14-36 Oracle Retail Integration Bus Implementation Guide

Adding a New rib-<app>

Add the following XML section under the <rib-applications> (before
</rib-applications>) section. In the jndi/url xml tag section, point it to the

location where foo.ear (not rib-foo.ear) is deployed. Refer to the Oracle Retail
Integration Bus Installation Guide for details.

<rib-app id="rib-foo" type="soap-app">
<deploy-in refid="rib-foo-wlsl"/>
<rib-admin-gui>
<web-app-url>https://ribhost.example.com:8108/rib-foo-appserver-gui/index. j
sp</web-app-url>
<web-app-user-alias>rib-foo_rib-admin-gui_
web-app-user-alias</web-app-user-alias>
</rib-admin-gui>

<error-hospital-database>
<hosp-url>jdbc:oracle:thin:@hospdbhost.example.com:1521:0rcl</hosp-url>
<hosp-user-alias>rib-foo_error-hospital-database_
user-name-alias</hosp-user-alias>

</error-hospital-database>

<app-database-not-applicable/>

<notifications>

<email>

<email-server-host>mail.example.com</email-server-host>
<email-server-port>25</email-server-port>
<from-address>admin@example.com</from-address>
<to-address-list>admin@example.com</to-address-1list>

</email>

<jmx/>

</notifications>

<app id="foo" type="soap-app">

<end-point>
<url>http://hostname:9001/injector-service/InjectorService</url>
<ws-policy-name>policyA/policyB</ws-policy-name>
<user-alias>rib-foo_ws_security_user-name-alias</user-alias>
</end-point>

</app>

</rib-app>

7. Update the rib-integration-flows.xml to add the publisher and subscriber flow
information for the app.

Create a customization-workarea directory under rib-home, extract
rib-integration-flows.xml present in rib-func-artifact-<version>.war.

> mkdir customization-workarea
> cd customization-workarea

> jar xf ../
application-assembly-home/rib-func-artifacts/rib-func-artifact-<version>.wa
r integration/rib-integration-flows.xml

Edit integration/rib-integration-flows.xml to add message flow details for
new app (rib-foo).

Add the following xml section as the last node of message-flow ID

number 28. Search for Receiving to take you to the right message-flow.

<node id="rib-foo.Receiving_sub" app-name="rib-foo"
adapter-class-def="Receiving_sub" type="JImsToDb">
<in-topic>etReceiving</in-topic>
<out-db>default</out-db>
</node>

RIB Customization/Extension

14-37

Verification of RIB Customizations

b. Add the following XML section as the first node of message-flow ID
number 65. Search for FulfilOrd to take you to the right message-flow.

<node id="rib-foo.FulfilOrd_pub" app-name="rib-foo"
adapter-class-def="FulfilOrd_pub" type="DbToJms">
<in-db>default</in-db>
<out-topic>etFulfillOrder</out-topic>
</node>

¢. Add updated rib-integration-flows.xml to rib-func-artifact.war.

> jar uvf
../application-assembly-home/rib-func-artifacts/rib-func-artifact-<version>
.war integration/rib-integration-flows.xml

d. Cleanup and remove the temporary working directory

>cd ..
> rm -rf customization-workarea

8. Run the rib-app-builder compiler: Run the rib-app-builder script from <RIB_
HOME>/application-assembly-home /bin directory to generate/assemble a
rib-<app> and make it ready for deployment.

> cd <RIB_HOME>/application-assembly-home/bin
> sh rib-app-compiler.sh -setup-security-credential

9. Run the rib-app-builder deployer: Run the rib-app-deployer.sh script from <RIB_
HOME?>/deployment-home/bin directory as follows to register the new
subscribing and publishing adapters in the flow.

> cd <RIB_HOME>/deployment-home/bin
> sh rib-app-deployer.sh -prepare-jms

10. Run the rib-app-builder deployer: Run the rib-app-deployer script from <RIB_
HOME?>/deployment-home/bin directory as follows:

> cd <RIB_HOME>/deployment-home/bin
> sh rib-app-deployer.sh -deploy-rib-func-artifact-war
This deploys the rib-func-artifact-war

> sh rib-app-deployer.sh -deploy-rib-app-ear rib-foo
This deploys the new soap rib-<app>.

Verification of RIB Customizations

This section explains how to verify the various customizations using the RIB
diagnostic and test tools, RDMT, the PL/SQL API simulator, and the Java EE API
simulator.

These verification tests are described only from a RIB perspective and not as
end-to-end testing. They should be considered only as the first step in a process to
move the customizations through the RIB life cycle.

The verification steps assume that these RIB tools have already been installed and are
in working condition.

Note: See "Testing the RIB" in the Oracle Retail Integration Bus
Operations Guide.

14-38 Oracle Retail Integration Bus Implementation Guide

Verification of RIB Customizations

Verifying the New Message Type

To verify the addition of a new message type under a message family from a RIB
perspective, complete the following steps.

1.

2
3
4.
5

Log in to the RDMT main menu.

Select menu option 3 - PUB/SUB/TAFR Msg Menu.

Publish a message using 8 - E]B Publish Utility.

Provide the new message type when prompted for the <type> parameter.

Use the sample message that was generated using the RIB Artifact Generator tool
after adding the new message type for the corresponding message family.

Check the corresponding adapter's RIBLOGS to be sure the message was
published successfully. The logs are written to the path, <rib-application_instance_
home>/<rib-app>/logs/ <rib-app>.

For example, for /home/dev01/Weblogic12.2/Oracle/Middleware/user_
projects/domains/rib_domain/servers/rib-rms-server/logs/rib-rms, the RIBLOG
filenames are in the format, <adapter-instance-name>.rib.log.

Example:

Alloc_pub_1l.rib.log
ASNIn_sub_1l.rib.log

Enable the RIB Audit Logs for all the corresponding adapters involved in the
message flow. The auditing feature logs the message as it passes though the RIB
infrastructure. This helps the tracing of message content from publication to
subscription and all steps, such as a TAFR, in between.

Note: To enable RIB Audit logs, see the section, "RIB Logging," in
the Oracle Retail Integration Bus Operations Guide .

Check the RIB audit logs for the particular message family adapters (publisher,
subscriber, and TAFR if involved) and verify whether the new message type is
part of the message header. Also ensure that the message passes successfully
through all the adapters involved in the particular message flow.

Check whether the new message type was successfully consumed by the
subscribing adapter. The CONSUME API call from the subscribing adapter should
successfully return the status S.

Verifying the New Message Family

To verify the addition of a new message family in the RIB, complete the following
steps:

1.

Once RIB is compiled and deployed (after adding a new message family), check
whether the new family adapters (publisher, subscriber, and TAFR if involved) are
visible through RIB Admin GUL

The RIB admin GUI can be accessed via the URL as below.

http://<server>.example.com:<http-port>/rib-<app>-admin-gui/

= Replace <server> with the name or IP address of the server in the environment
where the rib-<app> is deployed.

RIB Customization/Extension 14-39

Verification of RIB Customizations

o o &~ w N

= Replace <http-port> with the port number that the WebLogic managed server
instance is listening on (for example, 7777).

= Replace <app> with rms, tafr, rwms, sim, rfm, aip, lgf, ocds, rob, or rpm.

Note: See the section, "Admin GUI," in the Oracle Retail Integration
Bus Operations Guide.

Log in to the RDMT main menu.

Select menu option 3 - PUB/SUB/TAFR Msg Menu.

Publish a message using 8 - EJB Publish Utility.

Provide the new message family when prompted for the <family> parameter.

Use the sample message created by the Functional Artifact Generator.

Note: See the Oracle Retail Functional Artifact Generator Guide.

Check the corresponding adapter's RIBLOGS to be sure the message was
published successfully. The logs are written to the path, <rib-application_
managed_server>/logs/<rib-app>.

For example, for "/u00/webadmin/product/12.2.1.3.0/WLS/user_
projects/domains/rib_domain/servers/rib-rms-server/logs/rib-rms" the
RIBLOG filenames are in the format, <adapter-instance-name>.rib.log.

Example:

Foo_pub_1.rib.log
Foo_sub_1.rib.log

Also enable the RIB Audit Logs for all the corresponding adapters involved in the
message flow. The auditing feature logs the message as it passes though the RIB
infrastructure. This helps the tracing of message content from publication to
subscription and all steps, such as a TAFR, in between.

Note: To enable RIB Audit logs, see "RIB Logging" in the Oracle Retail
Integration Bus Operations Guide.

Check the RIB audit logs for the particular message family adapters (publisher,
subscriber, and TAFR if involved) and verify whether the new message family is
part of the message header. Also ensure that the message passes successfully
through all the adapters involved in the particular message flow.

Verifying the New Publishing Adapter

To verify the addition of a new publishing adapter for PL/SQL or Java EE
applications, complete the following steps:

1.

Once the RIB has been compiled and deployed (after adding a new publishing
adapter), check whether the new publishing adapter is visible through RIB Admin
GUL

The RIB admin GUI can be accessed via the URL as below:

14-40 Oracle Retail Integration Bus Implementation Guide

Verification of RIB Customizations

a & w0 Db

http://<server>.example.com:<http-port>/rib-<app>-admin-gui/
= Replace <server> with the name or IP address of the server in the environment
where the rib-<app> is deployed.

= Replace <http-port> with the port number that the WebLogic managed server
instance is listening on (for example, 7777).

= Replace <app> with rms, rwms, sim, rfm, aip, 1gf, ocds, rob, or rpm.

Note: See "Admin GUI" in the Oracle Retail Integration Bus Operations
Guide

Log in to the RDMT main menu.
Select menu option 3, PUB/SUB/TAFR Msg Menu.
Publish a message using 8 - EJB Publish Utility.

Use the sample message created by the Functional Artifact Generator for the
corresponding message family.

Check the corresponding adapter's RIBLOGS to be sure the message was
published successfully. The logs are written to the path, <rib-application_
managed_server>/logs/<rib-app>.

For example, for "/u00/webadmin/product/12.2.1/WLS/user_
projects/domains/rib_domain/servers/rib-rms-server/logs/rib-rms" the
RIBLOG filenames are in the format, <adapter-instance-name>.rib.log.

Example:

Foo_pub_1l.rib.log

Also enable the RIB Audit Logs for the corresponding publishing adapter
involved in the message flow. The auditing feature logs the message as it passes

though the RIB infrastructure. This helps the tracing of message content from
publication to subscription.

Note: To enable RIB Audit logs, see "RIB Logging" in the Oracle Retail
Integration Bus Operations Guide.

Check the RIB audit logs for the particular publishing adapter and verify whether
the message content is displayed correctly as published. Also ensure that the
message passes successfully through all the adapters involved in the particular
message flow.

Verifying the New Subscribing Adapter

To verify the addition of a new subscribing adapter for PL/SQL or Java EE
applications, complete the following steps:

1.

Once the RIB has been compiled and deployed (after adding a new subscribing
adapter), check whether the new subscribing adapter is visible through RIB
Admin GUL

The RIB admin GUI can be accessed via the URL as below.

http://<server>.example.com:<http-port>/rib-<app>-admin-gui/

RIB Customization/Extension 14-41

Verification of RIB Customizations

= Replace <server> with the name or IP address of the server in the environment
where the rib-<app> is deployed.

= Replace <http-port> with the port number that the WebLogic managed server
instance is listening on (for example, 7777).

= Replace <app> with rms, rwms, sim, rfm, aip, 1gf, ocds, rob, or rpm.

Note: See the section,"Admin GUL" in the Oracle Retail Integration
Bus Operations Guide.

Log in to the RDMT main menu.
Select menu option 3 - PUB/SUB/TAFR Msg Menu.

Publish a message using 1 - Publish Msg Utility to the topic from which the newly
added subscriber has to subscribe the message.

Use the sample message.

Check the corresponding adapter's RIBLOGS to be sure the message was
subscribed from the topic successfully. The logs are written to the path,
<rib-application_instance_home>/logs/<rib-app>.

For example, "/u00/webadmin/product/12.2.1/WLS/user_
projects/domains/rib_domain/servers/rib-rms-server/logs/rib-rms" the
RIBLOG filenames are in the format, <adapter-instance-name>.rib.log.

Example:

Foo_pub_1.rib.log

Also enable the RIB Audit Logs for the corresponding subscribing adapter
involved in the message flow. The auditing feature logs the message as it passes

though the RIB infrastructure. This helps the tracing of message content from
publication to subscription.

Note: To enable RIB Audit logs, see "RIB Logging" in the Oracle Retail
Integration Bus Operations Guide.

Check the RIB audit logs for the particular message family’s subscribing adapter
and verify whether the message content is displayed correctly. Also ensure that the
message is subscribed successfully by the subscribing adapter.

Verifying the New TAFR Adapter

To verify the addition of a new TAFR adapter, complete the following steps:

1.

Once the RIB has been compiled and deployed (after adding a new TAFR adapter),
check whether the new TAFR adapter is visible through RIB Admin GUIL

The RIB Admin GUI can be accessed via the URL as below.

http://<server>.example.com:<http-port>/rib-tafr-admin-gui/

= Replace <server> with the name or IP address of the server in the environment
where the rib-<app> is deployed.

14-42 Oracle Retail Integration Bus Implementation Guide

Prerequisites for RIB Localization

= Replace <http-port> with the port number that the WebLogic managed server
instance is listening on (for example, 7777).

Note: See the section, "Admin GUI," in the Oracle Retail Integration
Bus Operations Guide.

2. Login to the RDMT main menu.
3. Select menu option 3, PUB/SUB/TAFR Msg Menu.

4. Publish a message using 1—Publish Msg Utility to the topic from which the newly
added TAFR has to subscribe the message.

5. Use the sample message generated by the RIB Artifact Generator tool for the
corresponding message family.

6. Check the corresponding TAFR adapter's RIBLOGS to be sure the message was
subscribed by the TAFR from the particular topic and again published to the next
destination topic successfully. The logs are written to the path, <rib-application_
instance_home>/logs/rib-tafr.

For example, for "/u00/webadmin/product/12.2.1/WLS/user_
projects/domains/rib_domain/servers/rib-rms-server/logs/rib-rms" the
RIBLOG filenames are in the format, <adapter-instance-name>.rib.log.

Example:
SampleToSampleWH_tafr_ 1.rib.log
7. Also enable the RIB Audit Logs for the corresponding TAFR adapter. The auditing

feature logs the message as it passes though the RIB infrastructure. This helps the
tracing of message content from publication to subscription.

Note: To enable RIB Audit logs, see "RIB Logging" in the Oracle Retail
Integration Bus Operations Guide.

8. Check the RIB audit logs for the particular message family’s TAFR adapter and
verify whether the message content is displayed correctly.

Prerequisites for RIB Localization

The tools used for localization extension of the RIB are separately documented. The
primary tool is the Retail Functional Artifact Generator. The message (payload)
structure and packaging is covered in the Oracle Retail Functional Artifacts Guide.

The following documents are referenced in this chapter and are required for the
localization effort:

» Oracle Retail Functional Artifacts Guide

» Oracle Retail Functional Artifact Generator Guide

RIB Customization/Extension 14-43

Prerequisites for RIB Localization

14-44 Oracle Retail Integration Bus Implementation Guide

15

RIB Localization - Business Objects

The deployment of Oracle Retail applications across the globe often drive
requirements to localize the messages that flow among the Oracle Retail applications
to support the region specific requirements (such as tax laws).

This chapter provides a detailed description of localization implementation at the
Business Objects level. Localization hooks provided in base Business Objects and
placeholders for adding implements are covered elsewhere in this guide.

As localization of Business Objects is performed as part of the localization process,
where the end-point API's are changed or added to per region specific business
requirements, localizations are meant to be performed by Oracle Retail or Partners.
The localization points are not for use by customers. However, localization
customization ispossible for use by customers.

Prerequisites for RIB Localization

The tools used for localization extension of the RIB are separately documented. The
primary tool is the Retail Functional Artifact Generator. The message (payload)
structure and packaging is covered in the Oracle Retail Functional Artifacts Guide.

The following documents are referenced in this chapter and are required for the
localization effort:

» Oracle Retail Functional Artifacts Guide

» Oracle Retail Functional Artifact Generator Guide

Business Objects Localization

Business Object localization is defined as extensions of the base XSDS made by the
Oracle Retail or Partners to satisfy region specific business requirements.

RIB Localization - Business Objects 15-1

Business Objects Localization

Localization Hooks in Base Business Objects

The following table describes the hooks in base Business Objects.

Reference Description = Example
Every Base BO A new <xs:import
XSD importsa placeholder
LocOf<BO> XSDis created namespace="http://www.oracle.com/retail/integratio
XSD ﬁargacflbase n/custom/bo/ExtOfASNInDesc/v1"
Eﬁﬁlnfsg schemaLocation="../../../../custom/bo/ExtOfASNInDe
B JOCt BVETY o /v1/ExtOfASNInDesc.xsd">
usiness \ .
CHjectXS[) <reta11Do§:annotatlon> .
hnpcmtsthe <retailDoc:documentation>It's a
LocOf<BO> referenced element. For detailed description,
XSD. please refer referenced element
doc.</retailDoc:documentation>
</retailDoc:annotation>
</xs:import>
<xs:import
namespace="http://www.oracle.com/retail/integratio
n/base/bo/LocOfASNInDesc/v1"
schemaLocation="../../../../base/bo/LocOfASNInDesc
/v1/LocOfASNInDesc.xsd">
<retailDoc:annotation>
<retailDoc:documentation>It's a
referenced element. For detailed description,
please refer referenced element
doc.</retailDoc:documentation>
</retailDoc:annotation>
</xs:import>
Every Base BO Withineach ~ <xs:element name="ASNInItem">
XSD complex base Business <retailDoc:annotation>
type has a Object, every <retailDoc:documentation>Description
logahzaﬁon conqﬂextype is not available.</retailDoc:documentation>
pont contain a </retailDoc:annotation>
reference to a <xs:complexType>
placeholder <xXs:sequence>
for that
complex type
ﬁgi&;?;;f}hat <xs:element maxOccurs="1"
. minOccurs="0" ref="ExtOfASNInDesc:ExtOfASNInItem">
Business ; .
Cﬂject <retailDoc:annotation>

<retailDoc:documentation>Provide an extension hook
to customize ASNInItem.</retailDoc:documentation>
</retailDoc:annotation>
</xs:element>
<xs:element maxOccurs="1"
minOccurs="0" ref="LocOfASNInDesc:LocOfASNInItem">
<retailDoc:annotation>

<retailDoc:documentation>Provide an extension hook
to localize ASNInItem.</retailDoc:documentation>
</retailDoc:annotation>
</xs:element>
</Xs:sequence>
</xs:complexType>

15-2 Oracle Retail Integration Bus Implementation Guide

Business Objects Localization

Region Specific Placeholders

The following table describes region specific placeholders.

Reference Description Example
LocOfBO The LocOf <xs:schema elementFormDefault="qualified"
imports All XSD is point
Specific vvhep;aﬂthe targetNamespace="http://www.oracle.com/retail/integrati
Locals specﬁu:. on/base/bo/LocOfASNInDesc/v1"
&gﬁgiﬁgon version="1.0"
imported o .
and referred xmlns="http://www.oracle.com/retail/integration/base/bo
to. There /LocOfASNInDesc/v1"

exists one for
each region
(e.g. Brazil,

xmlns:BrASNInDesc="http://www.oracle.com/retail/integra
tion/localization/bo/BrASNInDesc/v1"

India, China,

etc.). The xmlns:InASNInDesc="http://www.oracle.com/retail/integra
ISCiftandard, tion/localization/bo/InASNInDesc/v1"

alpha-2 xmlns:retailDoc="http://www.w3.0rg/2001/XMLSchema"
country code xmlns:xs="http://www.w3.0rg/2001/XMLSchema">

is used as the FXS=hLLp: “WS.0rg

identifier. <retailDoc:annotation>

<retailDoc:documentation>This is root element
of this document which contains name space definitions
for the document elements.</retailDoc:documentation>
</retailDoc:annotation>
<Xs:import

namespace="http://www.oracle.com/retail/integration/loc
alization/bo/InASNInDesc/v1"
schemalocation="../../../../localization/bo/InASNInDesc
/v1/InASNInDesc.xsd">
<retailDoc:annotation>
<retailDoc:documentation>It's a referenced
element. For detailed description, please refer
referenced element doc.</retailDoc:documentation>
</retailDoc:annotation>
</xs:import>
<xs:import

namespace="http://www.oracle.com/retail/integration/loc
alization/bo/BrASNInDesc/v1"
schemalocation="../../../../localization/bo/BrASNInDesc
/v1/BrASNInDesc.xsd">
<retailDoc:annotation>
<retailDoc:documentation>It's a referenced
element. For detailed description, please refer
referenced element doc.</retailDoc:documentation>
</retailDoc:annotation>
</xs:import>
</xs:schema>

RIB Localization - Business Objects 15-3

Business Objects Localization

Reference Description Example
Each of For each of <xs:schema elementFormDefault="qualified"
the specific thecopqﬂfx o
localization typ§81nt € targetNamespace="http://www.oracle.com/retail/integrati
XSDs will reguﬁ; XSD on/localization/bo/BrASNInDesc/vl"
resolve the ;Eeclgz t version="1.0"
references € place 1o
. perform the o . .

with the actual xmlns="http://www.oracle.com/retail/integration/localiz
fCtuﬁl) localizations. ation/bo/BrASNInDesc/v1"
ocai?ahon lizati xmlns:retailDoc="http://www.w3.0rg/2001/XMLSchema"
speciiic Localization xmlns:xs="http://www.w3.0rg/2001/XMLSchema">
elements. team add <xs:import

implements i

here.

namespace="http://www.oracle.com/retail/integration/cus
tom/bo/EOfBrASNInDesc/v1"
schemalocation="../../../../custom/bo/EOfBrASNInDesc/vl
/EOfBrASNInDesc.xsd">
<retailDoc:annotation>
<retailDoc:documentation>It's a referenced
element.</retailDoc:documentation>
</retailDoc:annotation>
</xs:import>
<xs:element name="BrASNInItem">
<xs:complexType>
<xXS:sequence>

</XS:sequence>
</xs:element>
</xs:schema>

15-4 Oracle Retail Integration Bus Implementation Guide

Business Objects Localization

Localization Customization

The following table describes the hook for localization customization.

Reference Description Example

Each Ineach of the <xs:schema elementFormDefault="qualified"

specific specific

localization localizations, targetNamespace="http://www.oracle.com/retail/integrati
XSD ahookback ,,/16ca1ization/bo/BraSNTnDesc/vl"

complex to the version="1.0"

typecontain customizatio)

a n of that o . .
customizati complex type xmlns="http://www.oracle.com/retail/integration/localiz
on hook is referenced ation/bo/BrASNInDesc/v1"

xmlns:retailDoc="http://www.w3.0org/2001/XMLSchema"
xmlns:xs="http://www.w3.0rg/2001/XMLSchema">
<xXs:import

namespace="http://www.oracle.com/retail/integration/cus
tom/EOfBrASNInDesc/v1"
schemalocation="../../../../custom/EOfBrASNInDesc/v1/EO
fBrASNInDesc.xsd">
<retailDoc:annotation>
<retailDoc:documentation>It's a referenced
element.</retailDoc:documentation>
</retailDoc:annotation>
</xs:import>
<xs:element name="BrASNInItem">
<xs:complexType>
<XS:sequence>

<xs:element maxOccurs="1" minOccurs="0"
ref="EOfBrASNInDesc:EOfBrASNInItem">
<retailDoc:annotation>
<retailDoc:documentation>Provide an
extension hook to customize ASNInItem
</retailDoc:documentation>
</retailDoc:annotation>
</xs:element>
</Xs:sequence>
</xs:complexType>
</xs:element>
</xs:schema>

Adding Localization Fields

To add the localization specific fields in a placeholder, the first step is to determine the
region specific XSD, which is follows naming convention below:

<CC><BO>.xsd (for exampleBrASNInDesc), where CC =2 char ISO country code

Determine the complex type fields that must be added. Add the fields and generate
payloads using the Artifact Generator tool.

Note: See the Oracle Retail Functional Artifact Generator Guide and the
Oracle Retail Functional Artifacts Guide.

RIB Localization - Business Objects 15-5

Business Objects Localization

Adding Localization Customization Fields

Customization of localization Business Objects follows the same process required for
base Business Objects customization.

Packaging

Retail Functional Artifact packaging is extended to provide the regional localization
placeholders and the region specific XSD. The placeholders for localization
customization also are provided.

Note: See the Oracle Retail Functional Artifact Generator Guide and the
Oracle Retail Functional Artifacts Guide.

15-6 Oracle Retail Integration Bus Implementation Guide

16

Integration with External Applications

RIBforExt is the Oracle Retail Enterprise Integration component designed to address
the connectivity requirements for 3rd Party integrations in a hybrid cloud topology
where the RIB is deployed in the Retail Integration Cloud Services.

In a hybrid cloud scenario customers no longer have access to RIB’s JMS server and
cannot directly publish and subscribe to messages on the JMS topics. The RIB-EXT app
is designed to fill that gap, it provides Web Service based APIs to publish to and
subscribe from the RIB’s JMS from third party systems.

RIBforEXT has all of the RIB flows available for the deployment time configuration
based on the customer use cases.

RIB-EXT out-of-the-box provides the complete set of publishers, subscribers and retry
adapters needed for the external application to integrate with Oracle Retail
applications using RIB infrastructure.

The selective list of publisher and subscriber adapters needed by each specific external
application is defined by the customer’s implementation team.

Customer Premise 1 Cloud Provider

Intarnet
1
3

iﬁ]] | Retall Integration Console . =

—t RIB-EXT | PE— » AQ
ez \

Implementing RIB-EXT

RIB-EXT is an Oracle Retail Integration Application that provides necessary
communication channel for external applications to publish and consume message
from RIB’s JMS on cloud and premise.

Integration with External Applications 16-1

Implementing RIB-EXT

Note: For more information on WDSL's, see the Oracle Retail
Integration Bus Integration Guide and for information on plugable jar,
see the Client Connector For Oracle Retail Integration Cloud Service
19.0.0 (Patch) available on My Oracle Support.

External Application as a Publisher

For external applications to publish to the RIB JMS on cloud, it needs to use a
publishing webservice provided by rib-ext .The WSDL URL of publishing service is as
follows:

http:/ / <rib-ext-host>:<port>/ ApplicationMessagePublishingServiceBean / Applicatio
nMessagePublishingService?wsdl

An external application can publish messages using the above webservice only when
rib-ext is configured as a soap-app.

External Application as a Subscriber

For an external application to consume the message from the RIB’s JMS on cloud, it
has to host the Injector Service. Injector Service is a SOAP webservice that is made
available as a pluggable jar.

Subscriber adapters in rib-ext makes a SOAP call to Injector service to send the
message to the external application. The WSDL URL of injector service is as follows:

http:/ / <external-app-host>:<port>/ApplicationMessagelnjectorBean/InjectorService?
wsdl

The following example describes the steps to configure an external application to
publish and subscribe using RIB on cloud:

= Include rib-private-app-plugin-19.0.0,jar in to the external application deployable
file for example, ext-app.ear/lib.

s In the rib-deployment-env-info.xml file, configure the EXT application to be of
type "soap-app". Under <app-in-scope-for-integration>, change EXT from
javaee-app to soap-app:

<app id="ext" type="soap-app" />

= Replace the existing rib-app section for rib-ext with a copy of the rib-app section
for rib-sim (an existing soap-app). Edit the properties so that they apply for
rib-ext.

For example:

<rib-app id="rib-ext" type="soap-app">

<deploy-in refid="rib-ext-wlsl" />

<rib-admin-gui><message-flow id="901">
<web-app-url>https://www.example.com:<port>/rib-ext-appserver-gui/index. j

sp</web-app-url>
<web-app-user-alias>rib-ext_rib-admin-gui_

user-name-alias</web-app-user-alias>

</rib-admin-gui>

<error-hospital-database>

<hosp-user-alias>rib-ext_error-hospital-database_

user-name-alias</hosp-user-alias>

</error-hospital-database>

<app-database-not-applicable />

<notifications>

16-2 Oracle Retail Integration Bus Implementation Guide

Implementing RIB-EXT

Error Handling

<email>
<email-server-host>mail.example.com</email-server-host>
<email-server-port>25</email-server-port>
<from-address>admin@example.com</from-address>
<to-address-list>admin@example.com</to-address-list>
</email>
<jmx />
</notifications>
<app id="ext" type="soap-app">
<end-point>
<url>https://www.example.com:<port>/ApplicationMessageInjectorBean/InjectorServ
ice?WSDL</url>
<ws-policy-name>policyA</ws-policy-name>
<user-alias>rib-ext_ws_security user-name-alias</user-alias>
</end-point>
</app>
</rib-app>

= ws-policy-name should be configured with a value “policyA”.

= Make sure the rib-ext_ws_security_user-name-alias user is a member of the ext_
integration_users group in the EXT WebLogic domain. Make sure the EXT services
are up and running and can be called via the SOAP Ul using the credentials that
will be entered during RIB compilation.

s Compile and deploy RIB.

The RIB infrastructure provides a mechanism called RIB error hospital to handle and
manage the error messages. When the publishing or subscription of a message fails in
the rib-ext for some reason, it lands in error hospital with a reason code. The retry
adapters in the rib-ext application are responsible for retrying the messages in error
hospital.

Oracle RIB Hospital Administration (RIHA) is a Weblogic application that allows the
management of messages in error hospital. Some of the RIHA operations include:

= Viewing error messages

= Editing error messages

= Retrying error messages
= Stopping error messages

For more information, see the Oracle Retail Integration Bus Hospital Administration
Guide.

Monitoring Integration

To monitor live statistics of various components involved in RIB integration system
like RIB adapter, error hospital, JMS server, RTG provides a live monitoring
application called the Retail Integration Console (RIC).

The RIC is the user interface application designed to provide a unified view of the
RTG integration products within the business context of the Oracle Retail applications.
It provides near real time statistics regarding the message flows, JMS topics, historical
trends of each message family, performance comparisons, and static information like
application configuration.

For more information, see the Oracle Retail Integration Console User Guide.

Integration with External Applications 16-3

Implementing RIB-EXT

16-4 Oracle Retail Integration Bus Implementation Guide

A

External LDAP Configuration

WebLogic ships with a default internal Light-weight Directory Access Protocol (LDAP)
authentication provider. In an environment where a couple of domains exist, an
administrator can set up users and groups in an internal LDAP provider and use these
parameters during login and authentication. Alternatively, in an environment that
contains multiple domains, managing /maintaining users and groups can be a difficult
task. Oracle recommends that you use a centralized LDAP server to manage/maintain
the users and groups.

This chapter describes the steps you should take to configure the Oracle Internet
Directory (OID) and the Active Directory (AD) LDAP based authentication provider in
WebLogic.

Introducing the Oracle Internet Directory (OID)

An online directory is a specialized database that stores and retrieves collections of
information about objects. The information can represent any resources that require
management, for example:

= Employee names, titles, and security credentials
» Information about partners
» Information about shared resources such as conference rooms and printers

The information in the directory is available to different clients, such as single sign-on
solutions, e-mail clients, and database applications. Clients communicate with a
directory server by means of the LDAP. The Oracle Internet Directory is an LDAP
directory that uses an Oracle database for storage.

Introducing the Microsoft Active Directory (AD)

An Active Directory (AD) is a directory service implemented by Microsoft for
Windows domain networks. It is included in most Windows Server operating systems.

Active Directory is a special-purpose database — it is not a registry replacement. The
directory is designed to handle a large number of read and search operations and a
significantly smaller number of changes and updates. Active Directory data is
hierarchical, replicated, and extensible. Because it is replicated, you do not want to
store dynamic data, such as corporate stock prices or CPU performance.

In Windows 2000, Active Directory has three partitions. These are also known as
naming contexts: do-main, schema, and configuration. The domain partition contains
users, groups, contacts, computers, organizational units, and many other object types.
Because Active Directory is extensible, you can also add your own classes and /or

External LDAP Configuration A-1

Architecture Overview

attributes. The schema partition contains classes and attributes definitions. The
configuration partition includes configuration data for services, partitions, and sites.

Architecture Overview

The architecture diagram describes the configuration of an OID and AD LDAP-based
authentication provider used by applications deployed in an WebLogic server
environment.

‘Neblogic Domain
WebLogic localhost:7001 _

Administration [m=——=m———————o—==a ‘:°“F'3J‘M|
Console 1 0ID Authentication !

_ll- Provider Configuration yMbt /
| WebLogic Embedded LDAP ? <“
I Authentication Provider |
ll Configuration

!

i

[- Embedded

;. -£4_ LDAP
SUFFICIENT

,»;,' OID LDAP-Based

‘ Identity Store
;g% localhost :3060
cn=orcladmin
SUFFICIENT
. J

1
o

\.

The diagram displays a sample environment and consists of the following:

= The WebLogic Server running on port 7001

s The WebLogic Administration Console used to configure authentication providers
s The WebLogic Embedded LDAP server with a control flag setting of SUFFICIENT

= An OID LDAP-based identity store running on port 3060 with a control flag
setting of SUFFI-CIENT

= The WebLogic config.xml that stores the authentication provider configuration

By default, the WebLogic server uses a security realm with the name “myrealm” that
uses an embedded LDAP server (two default users WebLogic & OracleSystemUser)
that acts as data store for Authentication, Authorization, Credential Mapping and Role
Mapping Provider.

Configuring the Oracle Internet Directory (OID) as an Authentication
Provider in WebLogic

To configure the OID as an authentication provider in WebLogic, take the following
steps:

1. Login to WebLogic Console -> Security Realm -> myrealm.

A-2 Oracle Retail Integration Bus Implementation Guide

Configuring the Oracle Internet Directory (OID) as an Authentication Provider in WebLogic

ORACLE Weblogic Server® Administration Console

Change Center @ Home LogOut Preferences [Record Help Q

View changes and restarts Home >Summary of Security Realms »myrealm >Prov s »DefaultAuthenticator = Providers =DefaultAuthenticator >Summary of Security Realms
Pending changes exist. They must be activated Summary of Security Realms

to take effect.

Activate Changes
L4 g A security resim is a container for the mechanisms--including users, aroups, security roles, security polices, and security providerc--that are

Undo AllChanges Server domain, but only one can be set as the default (active) realm.

This Security Realms page lists each security realm that has been configured in this Weblogic Server domain. Click the name of the realm ta &
Domain Structure

rsb_gradle_domain
B-Environment

~Deployments Realms (Filtered - More Columns Exist)
Bt-Services

New | |Delete
B-Interoperabiity

BH-Diagnostics Hame & Default Realm

{ Customize this table

true

2. Select tab Providers -> Authentication -> Default Provider
(DefaultAuthenticator).

@ Home Log Qut Preferences Record Help Q

rs =DefaultAuthenticator =Providers

Hame =Summary of Security Reslms =myrealm =Pro
Settings for myrealm

Configuration | Users and Groups || Roles and Policies | Credential Mappings Migration

Authentication | Password Validation | Authorization | Adjudication | Role Mapping | Auditing | Credential Mapping || Certification Path | Keystores

An Authentication provider allows WeblLogic Server to establish trust by validating a user. You must have one Authentication provider in a security realm, and you can
Different types of Authentication providers are designed to access different data stores, such as LDAP servers or DBMS, You can also configure a Realm Adapter Auth
groups from previous releases of WebLogic Server,

[Customize this table

Authentication Providers

New | | Delete |Reurder

Name Description
faultAuthenticator WebLogic Authentication Provider
Defaultldentity Asserter WebLogic Identity Assertion provider

3. Change the Control Flag (JAAS Flag) parameter from REQUIRED to SUFFICIENT
and click Save.

Settings for DefaultAuthenticator
Configuration | Performance | Migration

Commeon | Provider Specific

Save

This page displays basic information about this WeblLogic Authentication provider. You can also use this page to set the JAAS C

#F Name: DefaultAuthenticator

gg Description: WebLogic Authentication Provider

&) Version: 1.0

@ Control Flag: SUFFICIENT ¥
REQUIRED

- S
0

4. Click New to add a new Authentication Provider.

External LDAP Configuration A-3

Configuring the Oracle Internet Directory (OID) as an Authentication Provider in WebLogic

@ Home Log Qut Preferences Record Help Q

Home =Summary of Security Realms =myrealm =Providers = DefaultAuthenticator =Providers = DefzultAuthenticator =Summary of Security Rezlms =myrezlm =Providers

Settings for myrealm
Configuration | Users and Groups || Roles and Policies | Credential Mappings Migration
Authentication | Password Validation | Authorization | Adjudication | Role Mapping | Auditing | Credential Mapping || Certification Path | Keystores
An Authentication provider allows WeblLogic Server to establish trust by validating a user. You must have one Authentication provider in a security realm, and you ¢

Different types of Authentication providers are designed to access different data stores, such as LDAP servers or DBMS. You can also configure a Realm Adapter A
groups from previous releases of WebLogic Server,

[Customize this table

Authentication Providers

Delete | Reorder
— .

Name Description
Defaultauthenticator WebLogic Authentication Provider
Defaultldentity Asserter WebLogic Identity Assertion provider

5. Enter OIDAuthentication as the Name of the new provider. Select
OraclelnternetDirectory Authenticator as Type and then click OK.

@ Home Log Qut Preferences Record Help

Q

Home =Summary of Security Realms =myrealm =Providers = DefzultAuthenticator =Providers =DefzultAuthenticator =5

Create a New Authentication Provider
QK Cancel

Create a new Authentication Provider

The following properties will be used to identify your new Authentication Provider,
* Indicates required fields

The name of the authentication provider,

DAuthentication

This is the type of authentication provider you wish to create.

*Name:

Type: OraclelntemnetDirectoryAuthenticator ¥
OAMIdentityAsserter
ok | || cancel OAMAuthenticator

ActiveDirectoryAuthenticator
CustomDBMSAuthenticator
DefaultAuthenticator
DefaultldentityAsserter
IPlanetAuthenticator
LDAPAuthenticator
LDAPX5091dentityAsserter
MNegotiateldentityAsserter
MNovellAuthenticator
Openl DAPAuthenti

ryAuthenticator
ReadOnlySQLAuthenticator
SQLAuthenticator

6. Change the Control Flag to SUFFICIENT for the OIDAuthentication Provider
added and click Save.

A-4 Oracle Retail Integration Bus Implementation Guide

Configuring the Oracle Internet Directory (OID) as an Authentication Provider in WebLogic

@ Home Log Qut Preferences Record Help |

s =DefaultAuthenticato

Hame =Summary of Security Realms =myrealm =Pro

Settings forDIDAuthentication

Configuration | Management | Migration

Commeon | Provider Specific

Save

This page displays basic information about this Oracle Internet Directory AL

#F Name: OIDAuthentication

gﬁ Description: Provider that performs LDAP aut

&) Version: 1.0

& Control Flag: | SUFFICIENT v |
REQUIRED

- %
9]

7. Select the Provider Specific tab and enter your OID server details.

a. The first section contains the Connection settings for the OID server. Use the
appropriate values based on where the OID is hosted and the credentials:

Name Value Purpose

Host: server.example.com The OID host name

Port: 3060 The standard OID listening port

Principal: cn=orcladmin,cn=Users,dc=idc,d The LDAP user that logs into OID on behalf

c=oracle,dc=com

of your authentication provider

Credentials: Password for the principal user
Confirm Confirmation of the password
Credentials:

SSL Unchecked Enables or disables SSL connectivity
Enabled:

Settings for OIDAuthentication
Configuration | Management | Migration

Common & Provider Specific

Save

Use this page to define the provider specific configuration for this Oracdle Internet Directory Authentication provider.

Connection

5] Host:

#F Port:

4] Principalk
Credential:
Confirm Credential:

#F] S5LEnabled

server.example.com

3060
cn=orcladmin,cn=Users.d

External LDAP Configuration A-5

Configuring the Oracle Internet Directory (OID) as an Authentication Provider in WebLogic

b. The second section contains the Users settings for the OID provider. Use
appropriate values:

Name Value Purpose
User Base DN: cn=Users,dc=idc,dc=oracle,dc=c The root (base DN) of the LDAP tree
om where searches are performed for
user data
All Users Filter: (&(cn=*)(objectclass=person)) -- The LDAP search filter that is used

Leave as default

to show all the users below the User
Base DN

User From Name

(&(cn=%u)(objectclass=person))

The LDAP search filter used to find

Filter: -- Leave as default the LDAP user by name

User Search Scope: ~ Leave as default Specifies how deep in the LDAP tree
to search for users

User Name Attribute: Leave as default The attribute of the LDAP user that
specifies the user name

User Object Class: Leave as default The LDAP object class that stores

users

Use Retrieved User
Name as Principal:

Checked

Specifies if the user name retrieved
from the LDAP directory will be
used as the Principal in the Subject

Users

#F] User Base DI:

#E] All Users Filter:

#F] User From Name Filter:

#F] User Search Scope:

#F] User Name Attribute:

#F] User Object Class:

cn=Users,dc=idc,dc=orac

(&(cn="){objectclass=pers

(&(cn=%u)(objectclass=p

subtree ¥

cn

person

i @g Use Retrieved User Name as Principal

c. The third section contains the Groups settings for the OID provider. Use
appropriate values:

Name Value Purpose
Group Base DN: cn=Groups,dc=idc,dc=oracle,dc The root (base DN) of the LDAP tree
=com where searches are per-formed for
group data
All Groups Filter: (&(cn=*)(| (objectclass=groupof = The LDAP search filter that is used

UniqueNames)(objectclass=orcl
dynamicgroup))) -- Leave as
default

to show all the groups below the
Group Base DN

Group From Name
Filter:

(1 (&(cn=%g)(objectclass=groupo The LDAP search filter used to find
fUniqueNames))(&(cn=%g)(obje the LDAP group by name

ctclass=orcldynamicgroup))) --
Leave as default

A-6 Oracle Retail Integration Bus Implementation Guide

Configuring the Oracle Internet Directory (OID) as an Authentication Provider in WebLogic

Name Value Purpose

Group Search Scope: Leave as default Specifies how deep in the LDAP tree
to search for groups

Group Member-ship Leave as default Specifies whether group searches

Searching: into nested groups are limited or
unlimited

Max Group Leave as default Specifies how many levels of group

Member-ship Search membership can be searched. This

Level: setting is only valid if
GroupMembershipSearching is set
to limited

Ignore Duplicate Unchecked Determines whether duplicates

Membership: members are ignored when adding
groups.

Groups
] Group Base DII: cn=Groups.dc=ide, de=orz

#E] All Groups Filter: (&(cn=")(|{objectclass=grc

#F] Group From Name Filter: (I(&(cn=%g)(objectclass=

#F] Group Search Scope: subtree ¥
@gGroup Membership Searching: unlimited ¥
@g Max Group Membership Search Level: 0

@g Ignore Duplicate Membership

d. Click Save.

8. Click Reorder to change the order of your configured authentication providers. In
order to ensure that the new OID authenticator is recognized as authentication
provider, you must reorder your list of authentication providers so that the OID
authentication provider is first in the list.

Authentication Providers

New | | Delete |Re0rder

Name

DefaultAuthenticator

DefaultldentityAsserter

ISCOID

OIDAuthentication

New | | Delete

9. Select the OIDAuthentication and use the arrows on the right to move it into the
first position. Click OK.

External LDAP Configuration A-7

Verifying the Oracle Internet Directory (OID) Configuration

Reorder Authentication Providers
QK Cancel

Reorder Authentication Providers

‘fou can reorder your Authentication Providers

Select authenticator (s) in the list and use arrow

#F] Authentication Providers:
Available:
DefaultAuthenticator
DefaultldentityAsserter
ISCOID

4]

b

4 4

QK | Cancel

Verifying the Oracle Internet Directory (OID) Configuration
To verify the OID configuration, take the following steps:
1. Restart the WebLogic Server for your changes to take effect.

2. Using the WebLogic Administration Console, select Security Realms > myrealm >
Users and Groups tab. The Users sub-tab should be selected by default. The
circled users are created in OID and can verify the Provider — OIDAuthentication
provider.

Users

New | Delete Showing 1to 10 of 15 Previous | Next

| | name & Description Provider

ig admm) agadmin User DAumEnﬁcaﬁoD

The ALSB system user is a buit-n system account which belongs to the ALSBSystem role. As such it has access to ALSBs internal artifacts. The password for this account is automatically | e e vere o
changed when the admin server boots to prevent direct access to this account,

alsb-system-user

dummy Dummy User OlDAuthentication
@ sit User OIDAuthentication
OracleSystemUser | Oradle application software system user, Defaultaythenticator
ReEETe) Seed administrative user for subscriber. ABDauthentication, |
PUBLIC This entry is used as the identification for unauthenticated users, / OlIDAuthentication
/ﬁam User to authenticats RIB GUT App [OIDAuthentication
{ [rhauser § rinouser Y omauthentication
\ rsbadmly User to authenticate RSB GUI App \\OIDAumEHDCEDU
e . gy gy
|new | [Dekete Showing 1to 10 of 15 Previous | Next

3. Click the Groups tab to see the list of groups the server can see. The highlighted
groups are created in OID and can verify the Provider —- OIDAuthentication

provider.
Groups
New | [Delete Showing 11 to 20 of 21 Previous | Next
| | Name & Description Provider
IntegrationManitors | IntegrationMonitors have read-only access to all Aqualogic Service Bus resources DefaultAuthenticator
IntegrationOperators IntegrationOperators have access to the following operations: 1) read all Aqualogic Service Bus resources, 2) view, create, update and delete alert rules, and 3) session DefaultAuthenticator
management induding create, commit, discard and undo of sessions

Monitors Monitors can view and modify all resource attributes and perform operations not restricted by roles. DefaultAuthenticator
OC5_PORTAL _USERS | Group of users for wham the Gracle Collaboration Suite home page is the default page. OIDAuthentication
Operators Operators can view and modify all resource attributes and perform server lifecyde operations. DefaultAuthenticator
OradeSystemGroup | Oracle application software system group. DefaultAuthenticator
ribAdminGroup RIB Admin Group OIDAuthentication
RihaAdminGroup RIHA Admin Group OIDAuthentication
RsbAdminGroup RSB Admin Group OIDAuthentication
RseAdminGroup RSE Admin Group OIDAuthentication

New | | Delete Showing 11to 20 of 21 Previous | Mext

A-8 Oracle Retail Integration Bus Implementation Guide

Using LDIF Scripts to Configure Users and Groups for OID

Using LDIF Scripts to Configure Users and Groups for OID

LDIF scripts can be used to import users and groups into OID. Two sample scripts are
supplied below. The scripts contain users and groups for multiple Oracle Retail
integration products. You must review and edit the scripts to match your deployment
topology and in-scope applications.

Integration-oid-create-groups.Idif
dn: cn=agAdminGroup,cn=groups,dc=us,dc=oracle,dc=com
objectclass: groupOfUniqueNames
objectclass: orclGroup
objectclass: top
cn: agAdminGroup

description: ArtifactGenerator Administrator is a group of individuals who can
generate artifacts used in the integration products like OracleObject, JavaBeans.

displayname: ArtifactGenerator Administrator
#businessCategory: TBD

uniquemember: cn=agadmin,cn=users,dc=us,dc=oracle,dc=com

dn: cn=JmsConsoleAdminGroup,cn=groups,dc=us,dc=oracle,dc=com
objectclass: groupOfUniqueNames

objectclass: orclGroup

objectclass: top

cn: JmsConsoleAdminGroup

description: JMS Console Administrator is a group of individuals who can perform
various administrator task on jmsconsole like publishing message on topic, browsing
messages on topic.

displayname: JMS Console Administrator
#businessCategory: TBD

uniquemember: cn=jmsconsoleadmin,cn=users,dc=us,dc=oracle,dc=com

dn: ecn=ribAdminGroup,cn=groups,dc=us,dc=oracle,dc=com
objectclass: groupOfUniqueNames

objectclass: orclGroup

objectclass: top

cn: ribAdminGroup

description: RIB Administrator is a group of individuals who can administrator
rib-admin-gui. View the adapters state, start/stop adapters, view logs,set the log levels
for adapters.

displayname: RIB Administrator
#businessCategory: TBD

External LDAP Configuration A-9

Using LDIF Scripts to Configure Users and Groups for OID

uniquemember: cn=ribrmsadmin,cn=users,dc=us,dc=oracle,dc=com
uniquemember: cn=ribsimadmin,cn=users,dc=us,dc=oracle,dc=com
uniquemember: cn=ribrwmsadmin,cn=users,dc=us,dc=oracle,dc=com
uniquemember: cn=ribaipadmin,cn=users,dc=us,dc=oracle,dc=com
uniquemember: cn=riblgfadmin,cn=users,dc=us,dc=oracle,dc=com
uniquemember: cn=ribocdadmin,cn=users,dc=us,dc=oracle,dc=com
uniquemember: cn=ribrobadmin,cn=users,dc=us,dc=oracle,dc=com
uniquemember: cn=ribtafradmin,cn=users,dc=us,dc=oracle,dc=com
uniquemember: cn=ribrfmadmin,cn=users,dc=us,dc=oracle,dc=com
uniquemember: cn=ribrpmadmin,cn=users,dc=us,dc=oracle,dc=com
dn: cn=IntegrationGroup,cn=groups,dc=us,dc=oracle,dc=com
objectclass: groupOfUniqueNames

objectclass: orclGroup

objectclass: top

cn: IntegrationGroup

description: IntegrationGroup is a group of individuals who can invoke rib interface
api inject and publish.

displayname: Integration Group
#businessCategory: TBD

uniquemember: cn=integrationuser,cn=users,dc=us,dc=oracle,dc=com

dn: cn=RihaAdminGroup,cn=groups,dc=us,dc=oracle,dc=com
objectclass: groupOfUniqueNames

objectclass: orclGroup

objectclass: top

cn: RihaAdminGroup

description: Riha Admin Group is a group of individuals who can administer rib
hospital. Can flush the messages stuck in rib error hospital, can retry the
messages,view the messages in error hospital and can edit.

displayname: Riha Administrator
#businessCategory: TBD

uniquemember: cn=rihaadmin,cn=users,dc=us,dc=oracle,dc=com

dn: cn=RicAdminGroup,cn=groups,dc=us,dc=oracle,dc=com
objectclass: groupOfUniqueNames

objectclass: orclGroup

objectclass: top

cn: RicAdminGroup

A-10 Oracle Retail Integration Bus Implementation Guide

Using LDIF Scripts to Configure Users and Groups for OID

description: Ric Admin Group is a group of individuals who can administer rib
runtime statistics , rsb runtime statistics.

displayname: Ric Administrator
#businessCategory: TBD

uniquemember: cn=ricadmin,cn=users,dc=us,dc=oracle,dc=com

dn: cn=rseAdminGroup,cn=groups,dc=us,dc=oracle,dc=com
objectclass: groupOfUniqueNames

objectclass: orclGroup

objectclass: top

cn: rseAdminGroup

description: Rse Admin Group is a group of individuals who can generate webservice
provider , consumer.

displayname: RSE Administrator
#businessCategory: TBD

uniquemember: cn=rseadmin,cn=users,dc=us,dc=oracle,dc=com

dn: cn=RfiAdminGroup,cn=groups,dc=us,dc=oracle,dc=com
objectclass: groupOfUniqueNames

objectclass: orclGroup

objectclass: top

cn: RfiAdminGroup

description: RFI Admin

displayname: RFI Administrator

#businessCategory: TBD

uniquemember: cn=rfiadmin,cn=users,dc=us,dc=oracle,dc=com

Integration-oid-create-users.ldif
dn: cn=agadmin, cn=Users,dc=us,dc=oracle,dc=com
description: A user for the 'AG Admin' role.
objectclass: inetOrgPerson
objectclass: organizationalPerson
objectclass: person
objectclass: top
objectclass: orcluser
objectclass: orcluserV2
objectclass: orclIDXPerson

cn: agadmin

External LDAP Configuration A-11

Using LDIF Scripts to Configure Users and Groups for OID

orclsamaccountname: agadmin
sn: agadmin

uid: agadmin

givenname: agadmin
displayname: agadmin
userpassword: <update your password here>
employeeNumber:
middleName:

orclHireDate:
telephoneNumber:
facsimileTelephoneNumber:
mail: agadmin@example.com
postalAddress:

street:

postalCode:

title:

employeeType:

dn: cn=jmsconsoleadmin, cn=Users,dc=us,dc=oracle,dc=com
description: A user for the 'TMS Console Admin' role.
objectclass: inetOrgPerson

objectclass: organizationalPerson

objectclass: person

objectclass: top

objectclass: orcluser

objectclass: orcluserV2

objectclass: orclIDXPerson

cn: jmsconsoleadmin

orclsamaccountname: jmsconsoleadmin

sn: jmsconsoleadmin

uid: jmsconsoleadmin

givenname: jmsconsoleadmin

displayname: jmsconsoleadmin

userpassword: <update your password here>
employeeNumber:

middleName:

orclHireDate:

A-12 Oracle Retail Integration Bus Implementation Guide

Using LDIF Scripts to Configure Users and Groups for OID

telephoneNumber:
facsimileTelephoneNumber:

mail: jmsconsoleadmin@example.com
postalAddress:

street:

postalCode:

title:

employeeType:

dn: ecn=ribrmsadmin, cn=Users,dc=us,dc=oracle,dc=com
description: A user for the 'RIB Admin' role.
objectclass: inetOrgPerson

objectclass: organizationalPerson
objectclass: person

objectclass: top

objectclass: orcluser

objectclass: orcluserV2

objectclass: orclIDXPerson

cn: ribrmsadmin

orclsamaccountname: ribrmsadmin

sn: ribrmsadmin

uid: ribrmsadmin

givenname: ribrmsadmin

displayname: ribrmsadmin

userpassword: <update your password here>
employeeNumber:

middleName:

orclHireDate:

telephoneNumber:
facsimileTelephoneNumber:

mail: ribrmsadmin@example.com
postalAddress:

street:

postalCode:

title:

employeeType:

External LDAP Configuration A-13

Using LDIF Scripts to Configure Users and Groups for OID

dn: en=ribrpmadmin, cn=Users,dc=us,dc=oracle,dc=com
description: A user for the 'RIB Admin' role.
objectclass: inetOrgPerson

objectclass: organizationalPerson
objectclass: person

objectclass: top

objectclass: orcluser

objectclass: orcluserV2

objectclass: orclIDXPerson

cn: ribrpmadmin

orclsamaccountname: ribrpmadmin

sn: ribrpmadmin

uid: ribrpmadmin

givenname: ribrpmadmin

displayname: ribrpmadmin

userpassword: <update your password here>
employeeNumber:

middleName:

orclHireDate:

telephoneNumber:
facsimileTelephoneNumber:

mail: ribrpmadmin@example.com
postalAddress:

street:

postalCode:

title:

employeeType:

dn: ecn=ribrwmsadmin, cn=Users,dc=us,dc=oracle,dc=com
description: A user for the 'RIB Admin' role.

objectclass: inetOrgPerson

objectclass: organizationalPerson

objectclass: person

objectclass: top

objectclass: orcluser

objectclass: orcluserV2

objectclass: orclIDXPerson

A-14 Oracle Retail Integration Bus Implementation Guide

Using LDIF Scripts to Configure Users and Groups for OID

cn: ribrwmsadmin
orclsamaccountname: ribrwmsadmin
sn: ribrwmsadmin

uid: ribrwmsadmin

givenname: ribrwmsadmin
displayname: ribrwmsadmin
userpassword: <update your password here>
employeeNumber:

middleName:

orclHireDate:

telephoneNumber:
facsimileTelephoneNumber:

mail: ribrwmsadmin@example.com
postalAddress:

street:

postalCode:

title:

employeeType:

dn: cn=riblgfadmin, cn=Users,dc=us,dc=oracle,dc=com
description: A user for the 'RIB Admin' role.
objectclass: inetOrgPerson

objectclass: organizationalPerson

objectclass: person

objectclass: top

objectclass: orcluser

objectclass: orcluserV2

objectclass: orclIDXPerson

cn: riblgfadmin

orclsamaccountname: riblgfadmin

sn: riblgfadmin

uid: riblgfadmin

givenname: riblgfadmin

displayname: riblgfadmin

userpassword: <update your password here>
employeeNumber:

middleName:

External LDAP Configuration A-15

Using LDIF Scripts to Configure Users and Groups for OID

orclHireDate:
telephoneNumber:
facsimileTelephoneNumber:
mail: riblgfadmin@example.com
postalAddress:

street:

postalCode:

title:

employeeType:

dn: ecn=ribrobadmin, cn=Users,dc=us,dc=oracle,dc=com
description: A user for the 'RIB Admin' role.
objectclass: inetOrgPerson

objectclass: organizationalPerson
objectclass: person

objectclass: top

objectclass: orcluser

objectclass: orcluserV2

objectclass: orclIDXPerson

cn: ribrobadmin

orclsamaccountname: ribrobadmin

sn: ribrobadmin

uid: ribrobadmin

givenname: ribrobadmin

displayname: ribrobadmin

userpassword: <update your password here>
employeeNumber:

middleName:

orclHireDate:

telephoneNumber:
facsimileTelephoneNumber:

mail: ribrobadmin@example.com
postalAddress:

street:

postalCode:

title:

employeeType:

A-16 Oracle Retail Integration Bus Implementation Guide

Using LDIF Scripts to Configure Users and Groups for OID

dn: ecn=ribocdsadmin, cn=Users,dc=us,dc=oracle,dc=com
description: A user for the 'RIB Admin' role.
objectclass: inetOrgPerson

objectclass: organizationalPerson
objectclass: person

objectclass: top

objectclass: orcluser

objectclass: orcluserV2

objectclass: orclIDXPerson

cn: ribocdsadmin

orclsamaccountname: ribocdsadmin

sn: ribocdsadmin

uid: ribocdsadmin

givenname: ribocdsadmin

displayname: ribocdsadmin

userpassword: <update your password here>
employeeNumber:

middleName:

orclHireDate:

telephoneNumber:
facsimileTelephoneNumber:

mail: ribocdsadmin@example.com
postalAddress:

street:

postalCode:

title:

employeeType:

dn: en=ribtafradmin, cn=Users,dc=us,dc=oracle,dc=com
description: A user for the 'RIB Admin' role.

objectclass: inetOrgPerson

objectclass: organizationalPerson

objectclass: person

objectclass: top

objectclass: orcluser

objectclass: orcluserV2

External LDAP Configuration A-17

Using LDIF Scripts to Configure Users and Groups for OID

objectclass: orclIDXPerson

cn: ribtafradmin
orclsamaccountname: ribtafradmin
sn: ribtafradmin

uid: ribtafradmin

givenname: ribtafradmin
displayname: ribtafradmin
userpassword: <update your password here>
employeeNumber:

middleName:

orclHireDate:

telephoneNumber:
facsimileTelephoneNumber:

mail: ribtafradmin@example.com
postalAddress:

street:

postalCode:

title:

employeeType:

dn: cn=ribaipadmin, cn=Users,dc=us,dc=oracle,dc=com
description: A user for the 'RIB Admin' role.
objectclass: inetOrgPerson

objectclass: organizationalPerson

objectclass: person

objectclass: top

objectclass: orcluser

objectclass: orcluserV2

objectclass: orclIDXPerson

cn: ribaipadmin

orclsamaccountname: ribaipadmin

sn: ribaipadmin

uid: ribaipadmin

givenname: ribaipadmin

displayname: ribaipadmin

userpassword: <update your password here>

employeeNumber:

A-18 Oracle Retail Integration Bus Implementation Guide

Using LDIF Scripts to Configure Users and Groups for OID

middleName:

orclHireDate:

telephoneNumber:
facsimileTelephoneNumber:
mail: ribaipadmin@example.com
postalAddress:

street:

postalCode:

title:

employeeType:

dn: ecn=ribsimadmin, cn=Users,dc=us,dc=oracle,dc=com
description: A user for the 'RIB Admin' role.
objectclass: inetOrgPerson

objectclass: organizationalPerson
objectclass: person

objectclass: top

objectclass: orcluser

objectclass: orcluserV2

objectclass: orclIDXPerson

cn: ribsimadmin

orclsamaccountname: ribsimadmin

sn: ribsimadmin

uid: ribsimadmin

givenname: ribsimadmin

displayname: ribsimadmin

userpassword: <update your password here>
employeeNumber:

middleName:

orclHireDate:

telephoneNumber:
facsimileTelephoneNumber:

mail: ribsimadmin@example.com
postalAddress:

street:

postalCode:

title:

External LDAP Configuration A-19

Using LDIF Scripts to Configure Users and Groups for OID

employeeType:

dn: ecn=ribrfmadmin, cn=Users,dc=us,dc=oracle,dc=com
description: A user for the 'RIB Admin' role.
objectclass: inetOrgPerson

objectclass: organizationalPerson
objectclass: person

objectclass: top

objectclass: orcluser

objectclass: orcluserV2

objectclass: orclIDXPerson

cn: ribrfmadmin

orclsamaccountname: ribrfmadmin

sn: ribrfmadmin

uid: ribrfmadmin

givenname: ribrfmadmin

displayname: ribrfmadmin

userpassword: <update your password here>
employeeNumber:

middleName:

orclHireDate:

telephoneNumber:
facsimileTelephoneNumber:

mail: ribrfmadmin@example.com
postalAddress:

street:

postalCode:

title:

employeeType:

dn: cn=integrationuser, cn=Users,dc=us,dc=oracle,dc=com
description: A user for the 'Integration’ role.

objectclass: inetOrgPerson

objectclass: organizationalPerson

objectclass: person

objectclass: top

objectclass: orcluser

A-20 Oracle Retail Integration Bus Implementation Guide

Using LDIF Scripts to Configure Users and Groups for OID

objectclass: orcluserV2

objectclass: orclIDXPerson

cn: integrationuser
orclsamaccountname: integrationuser
sn: integrationuser

uid: integrationuser

givenname: integrationuser
displayname: integrationuser
userpassword: <update your password here>
employeeNumber:

middleName:

orclHireDate:

telephoneNumber:
facsimileTelephoneNumber:

mail: integrationuser@example.com
postalAddress:

street:

postalCode:

title:

employeeType:

dn: ecn=rihaadmin, cn=Users,dc=us,dc=oracle,dc=com
description: A user for the RIHA Admin' role.
objectclass: inetOrgPerson

objectclass: organizationalPerson

objectclass: person

objectclass: top

objectclass: orcluser

objectclass: orcluserV2

objectclass: orclIDXPerson

cn: rihaadmin

orclsamaccountname: rihaadmin

sn: rihaadmin

uid: rihaadmin

givenname: rihaadmin

displayname: rihaadmin

userpassword: <update your password here>

External LDAP Configuration A-21

Using LDIF Scripts to Configure Users and Groups for OID

employeeNumber:
middleName:

orclHireDate:

telephoneNumber:
facsimileTelephoneNumber:
mail: rihaadmin@example.com
postalAddress:

street:

postalCode:

title:

employeeType:

dn: ecn=ricadmin, cn=Users,dc=us,dc=oracle,dc=com
description: A user for the 'RIC Admin' role.
objectclass: inetOrgPerson
objectclass: organizationalPerson
objectclass: person

objectclass: top

objectclass: orcluser

objectclass: orcluserV2
objectclass: orclIDXPerson

cn: ricadmin
orclsamaccountname: ricadmin
sn: ricadmin

uid: ricadmin

givenname: ricadmin
displayname: ricadmin
userpassword: <update your password here>
employeeNumber:
middleName:

orclHireDate:

telephoneNumber:
facsimileTelephoneNumber:
mail: ricadmin@example.com
postalAddress:

street:

postalCode:

title:

A-22 Oracle Retail Integration Bus Implementation Guide

Using LDIF Scripts to Configure Users and Groups for OID

employeeType:

dn: ecn=rseadmin, cn=Users,dc=us,dc=oracle,dc=com
description: A user for the 'RSE Admin' role.
objectclass: inetOrgPerson

objectclass: organizationalPerson
objectclass: person

objectclass: top

objectclass: orcluser

objectclass: orcluserV2

objectclass: orclIDXPerson

cn: rseadmin

orclsamaccountname: rseadmin

sn: rseadmin

uid: rseadmin

givenname: rseadmin

displayname: rseadmin

userpassword: <update your password here>
employeeNumber:

middleName:

orclHireDate:

telephoneNumber:
facsimileTelephoneNumber:

mail: rseadmin@example.com
postalAddress:

street:

postalCode:

title:

employeeType:

dn: en=rfiadmin, cn=Users,dc=us,dc=oracle,dc=com
description: A user for the 'RFI Admin' role.
objectclass: inetOrgPerson

objectclass: organizationalPerson

objectclass: person

objectclass: top

objectclass: orcluser

External LDAP Configuration A-23

Configuring Active Directory (AD) as an Authentication Provider in WebLogic

objectclass: orcluserV2

objectclass: orclIDXPerson

cn: rfiadmin

orclsamaccountname: rfiadmin

sn: rfiadmin

uid: rfiadmin

givenname: rfiadmin

displayname: rfiadmin

userpassword: <update your password here>

employeeNumber:

middleName:

orclHireDate:

telephoneNumber:

facsimileTelephoneNumber:

mail: rfiadmin@example.com

postalAddress:

street:

postalCode:

title:

employeeType:

Configuring Active Directory (AD) as an Authentication Provider in

WebLogic

To configure the AD as an authentication provider in WebLogic, take the following

steps:

1. Login to WebLogic Console -> Security Realm -> myrealm.

2. Select tab Providers -> Authentication -> Default Provider
(DefaultAuthenticator).

3. Change the Control Flag (JAAS Flag) from REQUIRED to SUFFICIENT and click
Save.

4. Click New to add a new Authentication Provider.

5. Enter MSADAuthenticator as the Name. Select ActiveDirectory Authenticator as

the Type and click OK.

A-24 Oracle Retail Integration Bus Implementation Guide

Configuring Active Directory (AD) as an Authentication Provider in WebLogic

Create a New Authentication Provider
QK Cancel

Create a new Authentication Provider

The following properties will be used to identify your new Authentication Provider,
* Indicates required fields

The name of the authentication provider,

*Name: MSADAuthenticator

This is the type of authentication provider you wish to create.

Type: [ActiveDirectoryAuthenticator v
SAMLZIdentityAsserter
ok | || cancel X3gpphssertedidentityAsserter

X3gppAssertedldentityStrictAsserter
DBMSDigestldentityAsserter
ldentityAssertionAuthenticator
IdentityHeaderAsserter
LdapDigestidentityAsserter
PAssertedldentityAsserter
PAssertedldentityStrictAsserter
CrossTenantAuthenticator
TrustSenviceldentityAsserter
0SS0ldentityAsserter
OAMIdentityAsserter
OAMAUthanticate
Activel ectoAulhenticator
CusToMT BN SAtiemticars
DefaultAuthenticator
DefaultldentityAsserter
|PlanetAuthenticator
LDAPAuthenticator

6. Change the Control Flag to SUFFICIENT for the MSADAuthenticator Provider
added and click Save.

Settings for§1SADAuthenticator

Configuration | Performance

Commeon | Provider Specific

Save

This page displays basic information about this Active Directory Authentication provider, You can also use this page to set the JAAS Control Flag to com

gg Name: MSADAuthenticator The name
gg Description: Provider that performs LDAP authentication A short di
&) Version: 1.0 The versi
@g Control Flag: [SUFFICIENT *] Specifies

sequence

Save

7. Select Provider Specific tab and enter the Active Directory (AD) server details.

a. The first section contains the Connection settings for the AD server. Use
appropriate values based on where AD is hosted and the credentials:

Name Value Purpose
Host: server.example.com The AD host name
Port: 389 The standard AD listening port

External LDAP Configuration A-25

Configuring Active Directory (AD) as an Authentication Provider in WebLogic

Name Value Purpose

Principal: cn=webadmin,cn=Users, The LDAP user that logs into AD on behalf
dc=us,dc=oracle,dc=com of your authentication provider

Credentials: Password for the principal user

Confirm Credentials: Confirmation of the password

SSL Enabled: Unchecked Enables or disables SSL connectivity

Settings for MSADAuthenticator

Configuration | Performance

Common { Provider Specific

Save

Use this page to define the provider specific configuration for this Active Directory Authentication provider,

Connection
(—Eg Host: servenexampi’e.com
#F Port: 389
&5 Principal: cn=webadmin.cn=Users.c
Credentiak e

Confirm Credentiat .

#F] SSLEnabled

b. The second section contains the Users settings for the AD provider. Use
appropriate values:

Name Value Purpose
User Base DN: cn=Users,dc=us,dc=oracle,dc=co The root (base DN) of the LDAP tree
m where searches are performed for

user data

All Users Filter: (&(cn="*)(objectclass=person)) The LDAP search filter that is used
to show all the users below the User
Base DN

User From Name (&(cn=%u)(objectclass=user)) The LDAP search filter used to find

Filter: the LDAP user by name

User Search Scope: ~ Leave as default Specifies how deep in the LDAP tree
to search for users

User Name Attribute: Leave as default The attribute of the LDAP user that
specifies the user name

User Object Class: Leave as default The LDAP object class that stores
users

Use Retrieved User ~ Unchecked Specifies if the user name retrieved

Name as Principal: from the LDAP directory will be

used as the Principal in the Subject

A-26 Oracle Retail Integration Bus Implementation Guide

Configuring Active Directory (AD) as an Authentication Provider in WebLogic

Users

#F] User Base DI:

#E] All Users Filter:

#F] User From Name Filter:

#F] User Search Scope:

#F] User Name Attribute:

#F] User Object Class:

cn=Users,dc=us, dc=oracl

(&(cn="){objectclass=pers

(&(cn=%u)(objectclass=u:

subtree ¥

cn

user

@g Use Retrieved User Name as Principal

¢. The third section contains the Groups settings for the AD provider. Use
appropriate values:

Name Value Purpose
Group Base DN: cn=Groups,dc=us,dc=oracle,dc= The root (base DN) of the LDAP tree
com where searches are performed for
group data
All Groups Filter: (&(cn=")(1 (objectclass=group))) The LDAP search filter that is used

to show all the groups below the
Group Base DN

Group From Name
Filter:

(&(cn=%g)(objectclass=group))

The LDAP search filter used to find
the LDAP group by name

Group Search Scope: Leave as default Specifies how deep in the LDAP tree
to search for groups

Group Member-ship Leave as default Specifies whether group searches

Searching: into nested groups are limited or
unlimited

Max Group Leave as default Specifies how many levels of group

Membership Search membership can be searched. This

Level: setting is only valid if
GroupMembershipSearching is set
to limited

Ignore Duplicate Unchecked Determines whether duplicates

Membership: members are ignored when adding

groups.

External LDAP Configuration A-27

Configuring Active Directory (AD) as an Authentication Provider in WebLogic

Groups
(] Group Base DI: cn=Groups.dc=us,dc=ora
&5 All Groups Filter: (&(cn="}(I{objectclass=grc
] Group From Name Filter: (&(cn=%g)(objectclass=gi
ggﬁroupSearch Scope: subtree ¥
ggﬁroup Membership Searching: unlimited ¥
gg Max Group Membership Search Level: 0

gg Ignore Duplicate Membership

gg Use Token Groups For Group Membership Lookup

d. Click Save.

8. Click Reorder to change the order of your configured authentication providers. In
order to ensure that MSAD authenticator is recognized as authentication provider,
you must reorder your list of authentication providers so that the MSAD
authentication provider is first in the list.

Authentication Providers

New | | Delete |Reurder

Name Description

DefaultAuthenticator WebLogic Authentication Provider
DefaultldentityAsserter WebLogic Identity Assertion provider
MSADAuthenticator Provider that performs LDAP authentication

New | | Delete
— ——

9. Select the MSADAuthenticator and use the arrows on the right to move it into the
first position. Click OK.

Reorder Authentication Providers
QK | Cancel

Reorder Authentication Providers

‘fou can reorder your Authentication Providers using the list below

Select authenticator (s) in the list and use arrows to move them up &

#F] Authentication Providers:
Available:

MSADAuthenticator

DefaultAuthenticator
DefaultldentityAsserter

¥l

I

4 4

QK Cancel

A-28 Oracle Retail Integration Bus Implementation Guide

Verifying the Active Directory (AD) Configuration

Verifying the Active Directory (AD) Configuration
To verify the AD configuration, take the following steps:
1. Restart the WebLogic Server for your changes to take effect.

2. Using the WebLogic Administration Console, select Security Realms > myrealm >
Users and Groups tab. The Users sub-tab should be selected by default. The
circled users are created in AD and can verify the Provider - MSADAuthenticator

provider.
Users
| MNew | | Delete Showing 1to 18 of 18 Previous | Next
|| Name & Description Provider
Administrator Built-in account for administering the computer fdomain MSADAuthenticator
@ ag admin 1 SADAumen@
| am agadmin DefaultAuthenticator
devsrvsppt Cracle Sys Admin Account MSADAuthenticator
Guest Built-in account for guest access to the computer fdomain MSADAuthenticator
jsituser jsit user MSADAuthenticator
krbtgt Key Distribution Center Service Account MSADAuthenticator
logUser MSADAuthenticator
|| | OracleSystemUser Oracle application software system user, DefaultAuthenticator
('_!Eib admin) rib admin ’mumenfc-a'ﬂr\
_l.ﬂ_auser riha user \@Aumenﬁc_w
1 | rmsuser DefaultAuthenticator
/m rsb admin /ﬁADAumenﬁcam
(rsbuser) rsb user (MSADAuthenticator)
\{iﬁ:adrfy rse admin \@ADAumenﬁcaV
user MSADAuthenticator
webadmin MSADAuthenticator
| [weblogic This user is the default administrator, DefaultAuthenticator
| MNew | | Delete Showing 1to 18 of 18 Previous | Next

3. Click the Groups tab to see the list of groups the server can see. The highlighted
groups are created in AD and can verify the Provider - MSADAuthenticator
provider.

External LDAP Configuration A-29

Verifying the Active Directory (AD) Configuration

Groups
New | | Delete Showing 1to 16 of 16 Previous | Next
||| name & Description Provider
[| AdminChannelUsers AdminChannelUsers can access the admin channel, DefaultAuthenticator
] | Administrators Administrators can view and modify all resource attributes and start and stop servers, DefaultAuthenticator
£ agAdminGroup > ag Admin Group & SADAuhenhcatoE)
] | agAdminGroup agAdminGroup DefaultAuthenticator
[| AppTesters AppTesters group. DefaultAuthenticator
[_] | CrossDomainConnectors CrossDomainConnectors can make inter-domain calls from foreign domains. DefaultAuthenticator
) | Deployers Deployers can view all resource attributes and deploy applications. DefaultAuthenticator
logUserGroup MSADAuthenticator
[CJ | Monitors Monitors can view and modify all resource attributes and perform operations not restricted by roles. DefaultAuthenticator
] | Operators Operators can view and modify all resource attributes and perform server lifecyde operations. DefaultAuthenticator
[| OradeSystemGroup Oracle application software system group. DefaultAuthenticator
<'7|EAdminGroup> Rib Admin Group MSADAuthenticator
[| RihaAdminGroup Riha admin group DefaultAuthenticator
L
/ ﬁsb.-'-\dmin(m Rsb Admin Group / MSADAumenﬁcm
I\.nl.'_s__e.-'-'u:lminGroLy rse Admin Group \ MSADAumenﬁcatoy
[T | rseAdminGroup DefaultAuthenticator

New | | Delete

A-30 Oracle Retail Integration Bus Implementation Guide

Show

ing 1to 16 of 16 Previous | Next

Sample Data from RIB App Monitoring Service

A sample data from RIB App monitoring service is shown below.

<S:Envelope xmlns:env="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:S="http://schemas.xmlsoap.org/soap/envelope/">
<env:Header/>
<S:Body>
<ns0:getRibAppSystemStateResponse
xmlns:nsl="http://www.oracle.com/retail/integration/rib/rib-integration-runtime-in
fo"
xmlns:ns0="http://www.oracle.com/retail/rib/monitor/service/RibAppMonitorService">
<nsl:rib-app-runtime-info id="rib-tafr" rib-app-status="RUNNING"
up-since="2016-09-09T05:15:22.814-04:00" total-events-count="334203">
<nsl:rib-adapters>
<nsl:subscriber id="rib-tafr.SeedData_tafr 1"
adapt-er-status="STOPPED" data-collection-time="2016-09-15T15:48:00.968-04:00"
adapter-type="MESSAGE_DRIVEN_SUBSCRIBER_TYPE">
<nsl:events-processed total-events-count="20"
num-ber-of-commits="20" number-of-rollbacks="0"
most-recent-event-time="2016-09-15T05:30:01.892-04:00"
most-recent-event-adapter-execution-time="10"
most-recent-event-integration-api-execution-time="0">
<nsl:todays-events>
<nsl:between-hours hour="3-4" event-count="10"
adapter-execution-min-time="10" adapter-execution-max-time="11008"
integra-tion-api-execution-min-time="0" integration-api-execution-max-time="2"/>
<nsl:between-hours hour="5-6" event-count="10"
adapter-execution-min-time="10" adapter-execution-max-time="3882"
integra-tion-api-execution-min-time="0" integration-api-execution-max-time="1"/>
</nsl:todays-events>
<nsl:events on="2016-09-15T00:00:00-04:00">
<nsl:between-hours hour="3-4" event-count="10"
adapter-execution-min-time="10" adapter-execution-max-time="11008"
integra-tion-api-execution-min-time="0" integration-api-execution-max-time="2"/>
<nsl:between-hours hour="5-6" event-count="10"
adapter-execution-min-time="10" adapter-execution-max-time="3882"
integra-tion-api-execution-min-time="0" integration-api-execution-max-time="1"/>
</nsl:events>
</nsl:events-processed>
</nsl:subscriber>
<nsl:subscriber id="rib-tafr.OrderToOdrWH_tafr_1"
adapt-er-status="STOPPED" data-collection-time="2016-09-15T15:48:00.967-04:00"
adapter-type="MESSAGE_DRIVEN_SUBSCRIBER_TYPE">
<nsl:events-processed total-events-count="26"
num-ber-of-commits="26" number-of-rollbacks="2"
most-recent-event-time="2016-09-15T03:49:36.763-04:00"
most-recent-event-adapter-execution-time="32"

Sample Data from RIB App Monitoring Service B-1

most-recent-event-integration-api-execution-time="0">
<nsl:todays-events>
<nsl:between-hours hour="3-4" event-count="26"
adapter-execution-min-time="22" adapter-execution-max-time="60012"
integra-tion-api-execution-min-time="0" integration-api-execution-max-time="0"/>
</nsl:todays-events>
<nsl:events on="2016-09-15T00:00:00-04:00">
<nsl:between-hours hour="3-4" event-count="26"
adapter-execution-min-time="22" adapter-execution-max-time="60012"
integra-tion-api-execution-min-time="0" integration-api-execution-max-time="0"/>
</nsl:events>
</nsl:events-processed>
</nsl:subscriber>
<nsl:subscriber id="rib-tafr.Transfers_tafr_1"
adapt-er-status="STOPPED" data-collection-time="2016-09-15T15:48:00.968-04:00"
adapter-type="MESSAGE_DRIVEN_SUBSCRIBER_TYPE">
<nsl:events-processed total-events-count="130"
num-ber-of-commits="42" number-of-rollbacks="88"
most-recent-event-time="2016-09-15T04:15:42.550-04:00"
most-recent-event-adapter-execution-time="60012"
most-recent-event-integration-api-execution-time="0">
<nsl:todays-events>
<nsl:between-hours hour="3-4" event-count="83"
adapter-execution-min-time="11" adapter-execution-max-time="60022"
integra-tion-api-execution-min-time="0" integration-api-execution-max-time="0"/>
<nsl:between-hours hour="4-5" event-count="47"
adapter-execution-min-time="11" adapter-execution-max-time="60311"
integra-tion-api-execution-min-time="0" integration-api-execution-max-time="0"/>
</nsl:todays-events>
<nsl:events on="2016-09-15T00:00:00-04:00">
<nsl:between-hours hour="3-4" event-count="83"
adapter-execution-min-time="11" adapter-execution-max-time="60022"
integra-tion-api-execution-min-time="0" integration-api-execution-max-time="0"/>
<nsl:between-hours hour="4-5" event-count="47"
adapter-execution-min-time="11" adapter-execution-max-time="60311"
integra-tion-api-execution-min-time="0" integration-api-execution-max-time="0"/>
</nsl:events>
</nsl:events-processed>
</nsl:subscriber>
<nsl:subscriber id="rib-tafr.WOOut_tafr_1"
adapt-er-status="STOPPED" data-collection-time="2016-09-15T15:48:00.969-04:00"
adapter-type="MESSAGE_DRIVEN_SUBSCRIBER_TYPE">
<nsl:events-processed total-events-count="7"
num-ber-of-commits="7" number-of-rollbacks="0"
most-recent-event-time="2016-09-15T03:33:29.768-04:00"
most-recent-event-adapter-execution-time="33"
most-recent-event-integration-api-execution-time="1">
<nsl:todays-events>
<nsl:between-hours hour="3-4" event-count="7"
adapt-er-execution-min-time="29" adapter-execution-max-time="11635"
integra-tion-api-execution-min-time="1" integration-api-execution-max-time="11"/>
</nsl:todays-events>
<nsl:events on="2016-09-15T00:00:00-04:00">
<nsl:between-hours hour="3-4" event-count="7"
adapt-er-execution-min-time="29" adapter-execution-max-time="11635"
integra-tion-api-execution-min-time="1" integration-api-execution-max-time="11"/>
</nsl:events>
</nsl:events-processed>
</nsl:subscriber>
<nsl:subscriber id="rib-tafr.WHToLocation_tafr_1"

B-2 Oracle Retail Integration Bus Implementation Guide

adapt-er-status="STOPPED" data-collection-time="2016-09-15T15:48:00.969-04:00"
adapter-type="MESSAGE_DRIVEN_SUBSCRIBER_TYPE">
<nsl:events-processed total-events-count="21"
num-ber-of-commits="21" number-of-rollbacks="0"
most-recent-event-time="2016-09-15T03:51:42.695-04:00"
most-recent-event-adapter-execution-time="29"
most-recent-event-integration-api-execution-time="1">
<nsl:todays-events>
<nsl:between-hours hour="3-4" event-count="21"
adapter-execution-min-time="11" adapter-execution-max-time="45"
integra-tion-api-execution-min-time="0" integration-api-execution-max-time="2"/>
</nsl:todays-events>
<nsl:events on="2016-09-15T00:00:00-04:00">
<nsl:between-hours hour="3-4" event-count="21"
adapter-execution-min-time="11" adapter-execution-max-time="45"
integra-tion-api-execution-min-time="0" integration-api-execution-max-time="2"/>
</nsl:events>
</nsl:events-processed>
</nsl:subscriber>
<nsl:subscriber id="rib-tafr.WHToWHPhys_tafr_1"
adapt-er-status="STOPPED" data-collection-time="2016-09-15T15:48:00.969-04:00"
adapter-type="MESSAGE_DRIVEN_SUBSCRIBER_TYPE">
<nsl:events-processed total-events-count="21"
num-ber-of-commits="21" number-of-rollbacks="0"
most-recent-event-time="2016-09-15T03:51:41.589-04:00"
most-recent-event-adapter-execution-time="28"
most-recent-event-integration-api-execution-time="0">
<nsl:todays-events>
<nsl:between-hours hour="3-4" event-count="21"
adapter-execution-min-time="10" adapter-execution-max-time="138"
integra-tion-api-execution-min-time="0" integration-api-execution-max-time="1"/>
</nsl:todays-events>
<nsl:events on="2016-09-15T00:00:00-04:00">
<nsl:between-hours hour="3-4" event-count="21"
adapter-execution-min-time="10" adapter-execution-max-time="138"
integra-tion-api-execution-min-time="0" integration-api-execution-max-time="1"/>
</nsl:events>
</nsl:events-processed>
</nsl:subscriber>
<nsl:subscriber id="rib-tafr.Partner_tafr 1"
adapt-er-status="STOPPED" data-collection-time="2016-09-15T15:48:00.967-04:00"
adapter-type="MESSAGE_DRIVEN_SUBSCRIBER_TYPE">
<nsl:events-processed total-events-count="107"
num-ber-of-commits="37" number-of-rollbacks="70"
most-recent-event-time="2016-09-15T04:04:55.033-04:00"
most-recent-event-adapter-execution-time="60014"
most-recent-event-integration-api-execution-time="1">
<nsl:todays-events>
<nsl:between-hours hour="3-4" event-count="94"
adapter-execution-min-time="11" adapter-execution-max-time="60017"
integra-tion-api-execution-min-time="1" integration-api-execution-max-time="2"/>
<nsl:between-hours hour="4-5" event-count="13"
adapter-execution-min-time="12" adapter-execution-max-time="60015"
integra-tion-api-execution-min-time="0" integration-api-execution-max-time="0"/>
</nsl:todays-events>
<nsl:events on="2016-09-15T00:00:00-04:00">
<nsl:between-hours hour="3-4" event-count="94"
adapter-execution-min-time="11" adapter-execution-max-time="60017"
integra-tion-api-execution-min-time="1" integration-api-execution-max-time="2"/>
<nsl:between-hours hour="4-5" event-count="13"

Sample Data from RIB App Monitoring Service B-3

adapter-execution-min-time="12" adapter-execution-max-time="60015"
integra-tion-api-execution-min-time="0" integration-api-execution-max-time="0"/>
</nsl:events>
</nsl:events-processed>
</nsl:subscriber>
<nsl:subscriber id="rib-tafr.StoresToStors_tafr_1"
adapt-er-status="STOPPED" data-collection-time="2016-09-15T15:48:00.968-04:00"
adapter-type="MESSAGE_DRIVEN_SUBSCRIBER_TYPE">
<nsl:events-processed total-events-count="32"
num-ber-of-commits="32" number-of-rollbacks="0"
most-recent-event-time="2016-09-15T03:53:20.954-04:00"
most-recent-event-adapter-execution-time="23"
most-recent-event-integration-api-execution-time="0">
<nsl:todays-events>
<nsl:between-hours hour="3-4" event-count="32"
adapter-execution-min-time="11" adapter-execution-max-time="118"
integra-tion-api-execution-min-time="0" integration-api-execution-max-time="1"/>
</nsl:todays-events>
<nsl:events on="2016-09-15T00:00:00-04:00">
<nsl:between-hours hour="3-4" event-count="32"
adapter-execution-min-time="11" adapter-execution-max-time="118"
integra-tion-api-execution-min-time="0" integration-api-execution-max-time="1"/>
</nsl:events>
</nsl:events-processed>
</nsl:subscriber>
<nsl:subscriber id="rib-tafr.ASNOutToASNOt_tafr_1"
adapt-er-status="STOPPED" data-collection-time="2016-09-15T15:48:00.966-04:00"
adapter-type="MESSAGE_DRIVEN_SUBSCRIBER_TYPE">
<nsl:events-processed total-events-count="82"
num-ber-of-commits="80" number-of-rollbacks="9"
most-recent-event-time="2016-09-15T04:06:13.656-04:00"
most-recent-event-adapter-execution-time="46"
most-recent-event-integration-api-execution-time="1">
<nsl:todays-events>
<nsl:between-hours hour="3-4" event-count="75"
adapter-execution-min-time="12" adapter-execution-max-time="60014"
integra-tion-api-execution-min-time="1" integration-api-execution-max-time="1"/>
<nsl:between-hours hour="4-5" event-count="7"
adapt-er-execution-min-time="12" adapter-execution-max-time="85"
integra-tion-api-execution-min-time="1" integration-api-execution-max-time="1"/>
</nsl:todays-events>
<nsl:events on="2016-09-15T00:00:00-04:00">
<nsl:between-hours hour="3-4" event-count="75"
adapter-execution-min-time="12" adapter-execution-max-time="60014"
integra-tion-api-execution-min-time="1" integration-api-execution-max-time="1"/>
<nsl:between-hours hour="4-5" event-count="7"
adapt-er-execution-min-time="12" adapter-execution-max-time="85"
integra-tion-api-execution-min-time="1" integration-api-execution-max-time="1"/>
</nsl:events>
</nsl:events-processed>
</nsl:subscriber>
<nsl:subscriber id="rib-tafr.WOIn_tafr_1" adapt-er-status="STOPPED"
data-collection-time="2016-09-15T15:48:00.969-04:00" adapter-type="MESSAGE_DRIVEN_
SUBSCRIBER_TYPE">
<nsl:events-processed total-events-count="14"
num-ber-of-commits="14" number-of-rollbacks="4"
most-recent-event-time="2016-09-15T03:39:01.327-04:00"
most-recent-event-adapter-execution-time="12"
most-recent-event-integration-api-execution-time="1">
<nsl:todays-events>

B-4 Oracle Retail Integration Bus Implementation Guide

<nsl:between-hours hour="3-4" event-count="14"
adapter-execution-min-time="12" adapter-execution-max-time="60053"
integra-tion-api-execution-min-time="1" integration-api-execution-max-time="1"/>
</nsl:todays-events>
<nsl:events on="2016-09-15T00:00:00-04:00">
<nsl:between-hours hour="3-4" event-count="14"
adapter-execution-min-time="12" adapter-execution-max-time="60053"
integra-tion-api-execution-min-time="1" integration-api-execution-max-time="1"/>
</nsl:events>
</nsl:events-processed>
</nsl:subscriber>
<nsl:subscriber id="rib-tafr.ItemsToItmTL_tafr_1"
adapt-er-status="STOPPED" data-collection-time="2016-09-15T15:48:00.967-04:00"
adapter-type="MESSAGE_DRIVEN_SUBSCRIBER_TYPE">
<nsl:events-processed total-events-count="82"
num-ber-of-commits="82" number-of-rollbacks="0"
most-recent-event-time="2016-09-15T05:01:45.400-04:00"
most-recent-event-adapter-execution-time="11"
most-recent-event-integration-api-execution-time="0">
<nsl:todays-events>
<nsl:between-hours hour="3-4" event-count="41"
adapter-execution-min-time="10" adapter-execution-max-time="8389"
integra-tion-api-execution-min-time="0" integration-api-execution-max-time="1"/>
<nsl:between-hours hour="4-5" event-count="39"
adapter-execution-min-time="10" adapter-execution-max-time="6102"
integra-tion-api-execution-min-time="0" integration-api-execution-max-time="1"/>
<nsl:between-hours hour="5-6" event-count="2"
adapt-er-execution-min-time="11" adapter-execution-max-time="13"
integra-tion-api-execution-min-time="0" integration-api-execution-max-time="0"/>
</nsl:todays-events>
<nsl:events on="2016-09-15T00:00:00-04:00">
<nsl:between-hours hour="3-4" event-count="41"
adapter-execution-min-time="10" adapter-execution-max-time="8389"
integra-tion-api-execution-min-time="0" integration-api-execution-max-time="1"/>
<nsl:between-hours hour="4-5" event-count="39"
adapter-execution-min-time="10" adapter-execution-max-time="6102"
integra-tion-api-execution-min-time="0" integration-api-execution-max-time="1"/>
<nsl:between-hours hour="5-6" event-count="2"
adapt-er-execution-min-time="11" adapter-execution-max-time="13"
integra-tion-api-execution-min-time="0" integration-api-execution-max-time="0"/>
</nsl:events>
</nsl:events-processed>
</nsl:subscriber>
<nsl:subscriber id="rib-tafr.SOStatus_tafr_1"
adapt-er-status="STOPPED" data-collection-time="2016-09-15T15:48:00.968-04:00"
adapter-type="MESSAGE_DRIVEN_SUBSCRIBER_TYPE">
<nsl:events-processed total-events-count="15"
num-ber-of-commits="15" number-of-rollbacks="0"
most-recent-event-time="2016-09-15T03:35:32.813-04:00"
most-recent-event-adapter-execution-time="23"
most-recent-event-integration-api-execution-time="1">
<nsl:todays-events>
<nsl:between-hours hour="3-4" event-count="15"
adapter-execution-min-time="11" adapter-execution-max-time="2612"
integra-tion-api-execution-min-time="0" integration-api-execution-max-time="1"/>
</nsl:todays-events>
<nsl:events on="2016-09-15T00:00:00-04:00">
<nsl:between-hours hour="3-4" event-count="15"
adapter-execution-min-time="11" adapter-execution-max-time="2612"
integra-tion-api-execution-min-time="0" integration-api-execution-max-time="1"/>

Sample Data from RIB App Monitoring Service B-5

</nsl:events>
</nsl:events-processed>
</nsl:subscriber>
<nsl:subscriber id="rib-tafr.Alloc_tafr_1"
adapt-er-status="STOPPED" data-collection-time="2016-09-15T15:48:00.966-04:00"
adapter-type="MESSAGE_DRIVEN_SUBSCRIBER_TYPE">
<nsl:events-processed total-events-count="83"
num-ber-of-commits="29" number-of-rollbacks="54"
most-recent-event-time="2016-09-15T03:58:37.051-04:00"
most-recent-event-adapter-execution-time="25"
most-recent-event-integration-api-execution-time="0">
<nsl:todays-events>
<nsl:between-hours hour="3-4" event-count="83"
adapter-execution-min-time="12" adapter-execution-max-time="60302"
integra-tion-api-execution-min-time="0" integration-api-execution-max-time="0"/>
</nsl:todays-events>
<nsl:events on="2016-09-15T00:00:00-04:00">
<nsl:between-hours hour="3-4" event-count="83"
adapter-execution-min-time="12" adapter-execution-max-time="60302"
integra-tion-api-execution-min-time="0" integration-api-execution-max-time="0"/>
</nsl:events>
</nsl:events-processed>
</nsl:subscriber>
<nsl:subscriber id="rib-tafr.ASNINToASNInL_ tafr_ 1"
adapt-er-status="STOPPED" data-collection-time="2016-09-15T15:48:00.965-04:00"
adapter-type="MESSAGE_DRIVEN_SUBSCRIBER_TYPE">
<nsl:events-processed total-events-count="10"
num-ber-of-commits="10" number-of-rollbacks="0"
most-recent-event-time="2016-09-15T03:38:21.401-04:00"
most-recent-event-adapter-execution-time="25"
most-recent-event-integration-api-execution-time="1">
<nsl:todays-events>
<nsl:between-hours hour="3-4" event-count="10"
adapter-execution-min-time="12" adapter-execution-max-time="3464"
integra-tion-api-execution-min-time="1" integration-api-execution-max-time="3"/>
</nsl:todays-events>
<nsl:events on="2016-09-15T00:00:00-04:00">
<nsl:between-hours hour="3-4" event-count="10"
adapter-execution-min-time="12" adapter-execution-max-time="3464"
integra-tion-api-execution-min-time="1" integration-api-execution-max-time="3"/>
</nsl:events>
</nsl:events-processed>
</nsl:subscriber>
<nsl:subscriber id="rib-tafr.StoresToLoc_tafr_1"
adapt-er-status="STOPPED" data-collection-time="2016-09-15T15:48:00.968-04:00"
adapter-type="MESSAGE_DRIVEN_SUBSCRIBER_TYPE">
<nsl:events-processed total-events-count="32"
num-ber-of-commits="32" number-of-rollbacks="0"
most-recent-event-time="2016-09-15T03:52:57.036-04:00"
most-recent-event-adapter-execution-time="25"
most-recent-event-integration-api-execution-time="0">
<nsl:todays-events>
<nsl:between-hours hour="3-4" event-count="32"
adapter-execution-min-time="9" adapter-execution-max-time="246"
integra-tion-api-execution-min-time="0" integration-api-execution-max-time="1"/>
</nsl:todays-events>
<nsl:events on="2016-09-15T00:00:00-04:00">
<nsl:between-hours hour="3-4" event-count="32"
adapter-execution-min-time="9" adapter-execution-max-time="246"
integra-tion-api-execution-min-time="0" integration-api-execution-max-time="1"/>

B-6 Oracle Retail Integration Bus Implementation Guide

</nsl:events>
</nsl:events-processed>
</nsl:subscriber>
<nsl:subscriber id="rib-tafr.ASNOutToASNIn_ tafr_ 1"
adapt-er-status="STOPPED" data-collection-time="2016-09-15T15:48:00.966-04:00"
adapter-type="MESSAGE_DRIVEN_SUBSCRIBER_TYPE">
<nsl:events-processed total-events-count="83"
num-ber-of-commits="81" number-of-rollbacks="5"
most-recent-event-time="2016-09-15T04:06:15.481-04:00"
most-recent-event-adapter-execution-time="33"
most-recent-event-integration-api-execution-time="0">
<nsl:todays-events>
<nsl:between-hours hour="3-4" event-count="75"
adapter-execution-min-time="19" adapter-execution-max-time="60035"
integra-tion-api-execution-min-time="0" integration-api-execution-max-time="0"/>
<nsl:between-hours hour="4-5" event-count="8"
adapt-er-execution-min-time="26" adapter-execution-max-time="41"
integra-tion-api-execution-min-time="0" integration-api-execution-max-time="0"/>
</nsl:todays-events>
<nsl:events on="2016-09-15T00:00:00-04:00">
<nsl:between-hours hour="3-4" event-count="75"
adapter-execution-min-time="19" adapter-execution-max-time="60035"
integra-tion-api-execution-min-time="0" integration-api-execution-max-time="0"/>
<nsl:between-hours hour="4-5" event-count="8"
adapt-er-execution-min-time="26" adapter-execution-max-time="41"
integra-tion-api-execution-min-time="0" integration-api-execution-max-time="0"/>
</nsl:events>
</nsl:events-processed>
</nsl:subscriber>
<nsl:subscriber id="rib-tafr.OrderToOdrISO_tafr_1"
adapt-er-status="STOPPED" data-collection-time="2016-09-15T15:48:00.967-04:00"
adapter-type="MESSAGE_DRIVEN_SUBSCRIBER_TYPE">
<nsl:events-processed total-events-count="26"
num-ber-of-commits="26" number-of-rollbacks="2"
most-recent-event-time="2016-09-15T03:49:37.990-04:00"
most-recent-event-adapter-execution-time="30"
most-recent-event-integration-api-execution-time="0">
<nsl:todays-events>
<nsl:between-hours hour="3-4" event-count="26"
adapter-execution-min-time="24" adapter-execution-max-time="60012"
integra-tion-api-execution-min-time="0" integration-api-execution-max-time="0"/>
</nsl:todays-events>
<nsl:events on="2016-09-15T00:00:00-04:00">
<nsl:between-hours hour="3-4" event-count="26"
adapter-execution-min-time="24" adapter-execution-max-time="60012"
integra-tion-api-execution-min-time="0" integration-api-execution-max-time="0"/>
</nsl:events>
</nsl:events-processed>
</nsl:subscriber>
<nsl:subscriber id="rib-tafr.CustOrder_tafr_1"
adapt-er-status="STOPPED" data-collection-time="2016-09-15T15:48:00.966-04:00"
adapter-type="MESSAGE_DRIVEN_SUBSCRIBER_TYPE">
<nsl:events-processed total-events-count="21"
num-ber-of-commits="7" number-of-rollbacks="14"
most-recent-event-time="2016-09-15T03:39:18.728-04:00"
most-recent-event-adapter-execution-time="38"
most-recent-event-integration-api-execution-time="1">
<nsl:todays-events>
<nsl:between-hours hour="3-4" event-count="21"
adapter-execution-min-time="12" adapter-execution-max-time="60016"

Sample Data from RIB App Monitoring Service B-7

integra-tion-api-execution-min-time="1" integration-api-execution-max-time="2"/>
</nsl:todays-events>
<nsl:events on="2016-09-15T00:00:00-04:00">
<nsl:between-hours hour="3-4" event-count="21"
adapter-execution-min-time="12" adapter-execution-max-time="60016"
integra-tion-api-execution-min-time="1" integration-api-execution-max-time="2"/>
</nsl:events>
</nsl:events-processed>
</nsl:subscriber>
<nsl:subscriber id="rib-tafr.UDAs_tafr_1" adapt-er-status="STOPPED"
data-collection-time="2016-09-15T15:48:00.969-04:00" adapter-type="MESSAGE_DRIVEN_
SUBSCRIBER_TYPE">
<nsl:events-processed total-events-count="10"
num-ber-of-commits="10" number-of-rollbacks="0"
most-recent-event-time="2016-09-15T03:34:45.952-04:00"
most-recent-event-adapter-execution-time="11"
most-recent-event-integration-api-execution-time="0">
<nsl:todays-events>
<nsl:between-hours hour="3-4" event-count="10"
adapter-execution-min-time="11" adapter-execution-max-time="60732"
integra-tion-api-execution-min-time="0" integration-api-execution-max-time="1"/>
</nsl:todays-events>
<nsl:events on="2016-09-15T00:00:00-04:00">
<nsl:between-hours hour="3-4" event-count="10"
adapter-execution-min-time="11" adapter-execution-max-time="60732"
integra-tion-api-execution-min-time="0" integration-api-execution-max-time="1"/>
</nsl:events>
</nsl:events-processed>
</nsl:subscriber>
<nsl:subscriber id="rib-tafr.RTVReq tafr_ 1"
adapt-er-status="STOPPED" data-collection-time="2016-09-15T15:48:00.967-04:00"
adapter-type="MESSAGE_DRIVEN_SUBSCRIBER_TYPE">
<nsl:events-processed total-events-count="24"
num-ber-of-commits="24" number-of-rollbacks="0"
most-recent-event-time="2016-09-15T05:15:52.080-04:00"
most-recent-event-adapter-execution-time="34"
most-recent-event-integration-api-execution-time="1">
<nsl:todays-events>
<nsl:between-hours hour="3-4" event-count="12"
adapter-execution-min-time="12" adapter-execution-max-time="11770"
integra-tion-api-execution-min-time="1" integration-api-execution-max-time="3"/>
<nsl:between-hours hour="5-6" event-count="12"
adapter-execution-min-time="12" adapter-execution-max-time="667"
integra-tion-api-execution-min-time="1" integration-api-execution-max-time="2"/>
</nsl:todays-events>
<nsl:events on="2016-09-15T00:00:00-04:00">
<nsl:between-hours hour="3-4" event-count="12"
adapter-execution-min-time="12" adapter-execution-max-time="11770"
integra-tion-api-execution-min-time="1" integration-api-execution-max-time="3"/>
<nsl:between-hours hour="5-6" event-count="12"
adapter-execution-min-time="12" adapter-execution-max-time="667"
integra-tion-api-execution-min-time="1" integration-api-execution-max-time="2"/>
</nsl:events>
</nsl:events-processed>
</nsl:subscriber>
<nsl:subscriber id="rib-tafr.ItemsToItmISO_tafr_1"
adapt-er-status="STOPPED" data-collection-time="2016-09-15T15:48:00.966-04:00"
adapter-type="MESSAGE_DRIVEN_SUBSCRIBER_TYPE">
<nsl:events-processed total-events-count="82"
num-ber-of-commits="82" number-of-rollbacks="0"

B-8 Oracle Retail Integration Bus Implementation Guide

most-recent-event-time="2016-09-15T05:02:09.784-04:00"
most-recent-event-adapter-execution-time="12"
most-recent-event-integration-api-execution-time="1">
<nsl:todays-events>
<nsl:between-hours hour="3-4" event-count="41"
adapter-execution-min-time="10" adapter-execution-max-time="915"
integra-tion-api-execution-min-time="0" integration-api-execution-max-time="1"/>
<nsl:between-hours hour="4-5" event-count="38"
adapter-execution-min-time="33" adapter-execution-max-time="3650"
integra-tion-api-execution-min-time="0" integration-api-execution-max-time="1"/>
<nsl:between-hours hour="5-6" event-count="3"
adapt-er-execution-min-time="10" adapter-execution-max-time="13"
integra-tion-api-execution-min-time="1" integration-api-execution-max-time="1"/>
</nsl:todays-events>
<nsl:events on="2016-09-15T00:00:00-04:00">
<nsl:between-hours hour="3-4" event-count="41"
adapter-execution-min-time="10" adapter-execution-max-time="915"
integra-tion-api-execution-min-time="0" integration-api-execution-max-time="1"/>
<nsl:between-hours hour="4-5" event-count="38"
adapter-execution-min-time="33" adapter-execution-max-time="3650"
integra-tion-api-execution-min-time="0" integration-api-execution-max-time="1"/>
<nsl:between-hours hour="5-6" event-count="3"
adapt-er-execution-min-time="10" adapter-execution-max-time="13"
integra-tion-api-execution-min-time="1" integration-api-execution-max-time="1"/>
</nsl:events>
</nsl:events-processed>
</nsl:subscriber>
<nsl:hospital id="rib-tafr.jms_hosp_0" adapter-status="STOPPED"
data-collection-time="2016-09-15T15:48:00.971-04:00" adapter-type="TIMER_DRIVEN_
HOSPITAL_SUB_TYPE"/>
<nsl:hospital id="rib-tafr.sub_hosp_ 0" adapter-status="STOPPED"
data-collection-time="2016-09-15T15:48:00.971-04:00" adapter-type="TIMER_DRIVEN_
HOSPITAL_SUB_TYPE"/>
</nsl:rib-adapters>
<nsl:error-hospital-db total-messages-in-eh="0"
to-tal-messages-in-eh-due-to-dependency="0"/>
<nsl:resource-usage>
<nsl:cpu current="0.010379236"/>
<nsl:memory current="1.06378035E9" max="1.90893261E9"
free="5.11592832E8" />
</nsl:resource-usage>
</nsl:rib-app-runtime-info>
</ns0:getRibAppSystemStateResponse>
</S:Body>
</S:Envelope>

Sample Data from RIB App Monitoring Service B-9

B-10 Oracle Retail Integration Bus Implementation Guide

Sample Data from Integration Monitoring
Service

A sample data from the integration monitoring service is given below:

<S:Envelope xmlns:env="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:S="http://schemas.xmlsoap.org/soap/envelope/">
<env:Header/>
<S:Body>
<ns0:getRibIntegrationSystemStateResponse
xmlns:nsl="http://www.oracle.com/retail/integration/rib/rib-integration-runtime-in
fo"
xmlns:nsO0="http://www.oracle.com/retail/rib/monitor/service/RibIntegrationMonitors
ervice">
<nsl:rib-integration-runtime-info
data-requested-at="2016-09-15T15:50:44.920-04:00">
<nsl:rib-app-runtime-info id="rib-rms" rib-app-status="RUNNING"
up-since="2016-09-10T02:56:39.520-04:00" total-events-count="141757">
<nsl:rib-adapters>
<nsl:subscriber id="rib-rms.StkCountSch_sub_ 1"
adapter-status="STOPPED" data-collection-time="2016-09-15T15:48:00.064-04:00"
adapter-type="MESSAGE_DRIVEN_SUBSCRIBER_TYPE">
<nsl:events-processed total-events-count="0"
number-of-commits="0" number-of-rollbacks="0"
most-recent-event-adapter-execution-time="0"
most-recent-event-integration-api-execution-time="0">
<nsl:todays-events/>
</nsl:events-processed>
</nsl:subscriber>
<nsl:subscriber id="rib-rms.WOStatus_sub_1"
adapter-status="STOPPED" data-collection-time="2016-09-15T15:48:00.064-04:00"
adapter-type="MESSAGE_DRIVEN_SUBSCRIBER_TYPE">
<nsl:events-processed total-events-count="0"
number-of-commits="0" number-of-rollbacks="0"
most-recent-event-adapter-execution-time="0"
most-recent-event-integration-api-execution-time="0">
<nsl:todays-events/>
</nsl:events-processed>
</nsl:subscriber>
<nsl:subscriber id="rib-rms.XItemRcls_sub_ 1"
adapter-status="STOPPED" data-collection-time="2016-09-15T15:48:00.065-04:00"
adapter-type="MESSAGE_DRIVEN_SUBSCRIBER_TYPE">
<nsl:events-processed total-events-count="0"
number-of-commits="0" number-of-rollbacks="0"
most-recent-event-adapter-execution-time="0"
most-recent-event-integration-api-execution-time="0">
<nsl:todays-events/>

Sample Data from Integration Monitoring Service C-1

</nsl:events-processed>
</nsl:subscriber>
<nsl:subscriber id="rib-rms.DSRcpt_sub_1"
adapter-status="STOPPED" data-collection-time="2016-09-15T15:48:00.062-04:00"
adapter-type="MESSAGE_DRIVEN_SUBSCRIBER_TYPE">
<nsl:events-processed total-events-count="0"
number-of-commits="0" number-of-rollbacks="0"
most-recent-event-adapter-execution-time="0"
most-recent-event-integration-api-execution-time="0">
<nsl:todays-events/>
</nsl:events-processed>
</nsl:subscriber>
<nsl:subscriber id="rib-rms.XCostChg_sub_1"
adapter-status="STOPPED" data-collection-time="2016-09-15T15:48:00.064-04:00"
adapter-type="MESSAGE_DRIVEN_SUBSCRIBER_TYPE">
<nsl:events-processed total-events-count="0"
number-of-commits="0" number-of-rollbacks="0"
most-recent-event-adapter-execution-time="0"
most-recent-event-integration-api-execution-time="0">
<nsl:todays-events/>
</nsl:events-processed>
</nsl:subscriber>
<nsl:subscriber id="rib-rms.XItem_sub_1"
adapter-status="STOPPED" data-collection-time="2016-09-15T15:48:00.065-04:00"
adapter-type="MESSAGE_DRIVEN_SUBSCRIBER_TYPE">
<nsl:events-processed total-events-count="0"
number-of-commits="0" number-of-rollbacks="0"
most-recent-event-adapter-execution-time="0"
most-recent-event-integration-api-execution-time="0">
<nsl:todays-events/>
</nsl:events-processed>
</nsl:subscriber>
<nsl:subscriber id="rib-rms.FulfilOrd_sub_1"
adapter-status="STOPPED" data-collection-time="2016-09-15T15:48:00.062-04:00"
adapter-type="MESSAGE_DRIVEN_SUBSCRIBER_TYPE">
<nsl:events-processed total-events-count="0"
number-of-commits="0" number-of-rollbacks="0"
most-recent-event-adapter-execution-time="0"
most-recent-event-integration-api-execution-time="0">
<nsl:todays-events/>
</nsl:events-processed>
</nsl:subscriber>
<nsl:subscriber id="rib-rms.SOStatus_sub_1"
adapter-status="STOPPED" data-collection-time="2016-09-15T15:48:00.063-04:00"
adapter-type="MESSAGE_DRIVEN_SUBSCRIBER_TYPE">
<nsl:events-processed total-events-count="0"
number-of-commits="0" number-of-rollbacks="0"
most-recent-event-adapter-execution-time="0"
most-recent-event-integration-api-execution-time="0">
<nsl:todays-events/>
</nsl:events-processed>
</nsl:subscriber>
<nsl:subscriber id="rib-rms.PayTerm_sub_1"
adapter-status="STOPPED" data-collection-time="2016-09-15T15:48:00.063-04:00"
adapter-type="MESSAGE_DRIVEN_SUBSCRIBER_TYPE">
<nsl:events-processed total-events-count="0"
number-of-commits="0" number-of-rollbacks="0"
most-recent-event-adapter-execution-time="0"
most-recent-event-integration-api-execution-time="0">
<nsl:todays-events/>

C-2 Oracle Retail Integration Bus Implementation Guide

</nsl:events-processed>
</nsl:subscriber>
<nsl:subscriber id="rib-rms.XMrchHr_sub_1"
adapter-status="STOPPED" data-collection-time="2016-09-15T15:48:00.066-04:00"
adapter-type="MESSAGE_DRIVEN_SUBSCRIBER_TYPE">
<nsl:events-processed total-events-count="0"
number-of-commits="0" number-of-rollbacks="0"
most-recent-event-adapter-execution-time="0"
most-recent-event-integration-api-execution-time="0">
<nsl:todays-events/>
</nsl:events-processed>
</nsl:subscriber>
<nsl:subscriber id="rib-rms.XLocTrt_sub_ 1"
adapter-status="STOPPED" data-collection-time="2016-09-15T15:48:00.065-04:00"
adapter-type="MESSAGE_DRIVEN_SUBSCRIBER_TYPE">
<nsl:events-processed total-events-count="0"
number-of-commits="0" number-of-rollbacks="0"
most-recent-event-adapter-execution-time="0"
most-recent-event-integration-api-execution-time="0">
<nsl:todays-events/>
</nsl:events-processed>
</nsl:subscriber>
<nsl:subscriber id="rib-rms.XDiffID_sub_1"
adapter-status="STOPPED" data-collection-time="2016-09-15T15:48:00.065-04:00"
adapter-type="MESSAGE_DRIVEN_SUBSCRIBER_TYPE">
<nsl:events-processed total-events-count="0"
number-of-commits="0" number-of-rollbacks="0"
most-recent-event-adapter-execution-time="0"
most-recent-event-integration-api-execution-time="0">
<nsl:todays-events/>
</nsl:events-processed>
</nsl:subscriber>
<nsl:subscriber id="rib-rms.Receiving sub_1"
adapter-status="STOPPED" data-collection-time="2016-09-15T15:48:00.063-04:00"
adapter-type="MESSAGE_DRIVEN_SUBSCRIBER_TYPE">
<nsl:events-processed total-events-count="26"
number-of-commits="14" number-of-rollbacks="12"
most-recent-event-time="2016-09-15T01:58:38.440-04:00"
most-recent-event-adapter-execution-time="54"
most-recent-event-integration-api-execution-time="535">
<nsl:todays-events>
<nsl:between-hours hour="0-1" event-count="10"
adapter-execution-min-time="35" adapter-execution-max-time="19019"
integration-api-execution-min-time="2449"
integration-api-execution-max-time="18995"/>
<nsl:between-hours hour="1-2" event-count="16"
adapter-execution-min-time="35" adapter-execution-max-time="6531"
integration-api-execution-min-time="353"
integration-api-execution-max-time="6519"/>
</nsl:todays-events>
<nsl:events on="2016-09-15T00:00:00-04:00">
<nsl:between-hours hour="0-1" event-count="10"
adapter-execution-min-time="35" adapter-execution-max-time="19019"
integration-api-execution-min-time="2449"
integration-api-execution-max-time="18995"/>
<nsl:between-hours hour="1-2" event-count="16"
adapter-execution-min-time="35" adapter-execution-max-time="6531"
integration-api-execution-min-time="353"
integration-api-execution-max-time="6519"/>
</nsl:events>

Sample Data from Integration Monitoring Service

C-3

</nsl:events-processed>
</nsl:subscriber>
<nsl:subscriber id="rib-rms.XOrder_sub_1"
adapter-status="STOPPED" data-collection-time="2016-09-15T15:48:00.066-04:00"
adapter-type="MESSAGE_DRIVEN_SUBSCRIBER_TYPE">
<nsl:events-processed total-events-count="0"
number-of-commits="0" number-of-rollbacks="0"
most-recent-event-adapter-execution-time="0"
most-recent-event-integration-api-execution-time="0">
<nsl:todays-events/>
</nsl:events-processed>
</nsl:subscriber>
<nsl:subscriber id="rib-rms.OTB_sub_1" adapter-status="STOPPED"
data-collection-time="2016-09-15T15:48:00.063-04:00" adapter-type="MESSAGE_DRIVEN_
SUBSCRIBER_TYPE">
<nsl:events-processed total-events-count="2"
number-of-commits="2" number-of-rollbacks="0"
most-recent-event-time="2016-09-15T01:40:48.954-04:00"
most-recent-event-adapter-execution-time="627"
most-recent-event-integration-api-execution-time="619">
<nsl:todays-events>
<nsl:between-hours hour="1-2" event-count="2"
adapter-execution-min-time="627" adapter-execution-max-time="2070"
integration-api-execution-min-time="619"
integration-api-execution-max-time="2055"/>
</nsl:todays-events>
<nsl:events on="2016-09-15T00:00:00-04:00">
<nsl:between-hours hour="1-2" event-count="2"
adapter-execution-min-time="627" adapter-execution-max-time="2070"
integration-api-execution-min-time="619"
integration-api-execution-max-time="2055"/>
</nsl:events>
</nsl:events-processed>
</nsl:subscriber>
<nsl:subscriber id="rib-rms.XStore_sub_1"
adapter-status="STOPPED" data-collection-time="2016-09-15T15:48:00.066-04:00"
adapter-type="MESSAGE_DRIVEN_SUBSCRIBER_TYPE">
<nsl:events-processed total-events-count="0"
number-of-commits="0" number-of-rollbacks="0"
most-recent-event-adapter-execution-time="0"
most-recent-event-integration-api-execution-time="0">
<nsl:todays-events/>
</nsl:events-processed>
</nsl:subscriber>
<nsl:subscriber id="rib-rms.XItemLoc_sub_1"
adapter-status="STOPPED" data-collection-time="2016-09-15T15:48:00.065-04:00"
adapter-type="MESSAGE_DRIVEN_SUBSCRIBER_TYPE">
<nsl:events-processed total-events-count="0"
number-of-commits="0" number-of-rollbacks="0"
most-recent-event-adapter-execution-time="0"
most-recent-event-integration-api-execution-time="0">
<nsl:todays-events/>
</nsl:events-processed>
</nsl:subscriber>
<nsl:subscriber id="rib-rms.COCogs_sub_1"
adapter-status="STOPPED" data-collection-time="2016-09-15T15:48:00.060-04:00"
adapter-type="MESSAGE_DRIVEN_SUBSCRIBER_TYPE">
<nsl:events-processed total-events-count="0"
number-of-commits="0" number-of-rollbacks="0"
most-recent-event-adapter-execution-time="0"

C-4 Oracle Retail Integration Bus Implementation Guide

most-recent-event-integration-api-execution-time="0">
<nsl:todays-events/>
</nsl:events-processed>
</nsl:subscriber>
<nsl:subscriber id="rib-rms.ASNIn_sub_1"
adapter-status="STOPPED" data-collection-time="2016-09-15T15:48:00.060-04:00"
adapter-type="MESSAGE_DRIVEN_SUBSCRIBER_TYPE">
<nsl:events-processed total-events-count="0"
number-of-commits="0" number-of-rollbacks="0"
most-recent-event-adapter-execution-time="0"
most-recent-event-integration-api-execution-time="0">
<nsl:todays-events/>
</nsl:events-processed>
</nsl:subscriber>
<nsl:subscriber id="rib-rms.FrtTerm_sub_1"
adapter-status="STOPPED" data-collection-time="2016-09-15T15:48:00.062-04:00"
adapter-type="MESSAGE_DRIVEN_SUBSCRIBER_TYPE">
<nsl:events-processed total-events-count="0"
number-of-commits="0" number-of-rollbacks="0"
most-recent-event-adapter-execution-time="0"
most-recent-event-integration-api-execution-time="0">
<nsl:todays-events/>
</nsl:events-processed>
</nsl:subscriber>
<nsl:subscriber id="rib-rms.XMrchHrRcls_sub_ 1"
adapter-status="STOPPED" data-collection-time="2016-09-15T15:48:00.066-04:00"
adapter-type="MESSAGE_DRIVEN_SUBSCRIBER_TYPE">
<nsl:events-processed total-events-count="0"
number-of-commits="0" number-of-rollbacks="0"
most-recent-event-adapter-execution-time="0"
most-recent-event-integration-api-execution-time="0">
<nsl:todays-events/>
</nsl:events-processed>
</nsl:subscriber>
<nsl:subscriber id="rib-rms.COSale_sub_1"
adapter-status="STOPPED" data-collection-time="2016-09-15T15:48:00.061-04:00"
adapter-type="MESSAGE_DRIVEN_SUBSCRIBER_TYPE">
<nsl:events-processed total-events-count="0"
number-of-commits="0" number-of-rollbacks="0"
most-recent-event-adapter-execution-time="0"
most-recent-event-integration-api-execution-time="0">
<nsl:todays-events/>
</nsl:events-processed>
</nsl:subscriber>
<nsl:subscriber id="rib-rms.XOrgHr_sub_1"
adapter-status="STOPPED" data-collection-time="2016-09-15T15:48:00.066-04:00"
adapter-type="MESSAGE_DRIVEN_SUBSCRIBER_TYPE">
<nsl:events-processed total-events-count="0"
number-of-commits="0" number-of-rollbacks="0"
most-recent-event-adapter-execution-time="0"
most-recent-event-integration-api-execution-time="0">
<nsl:todays-events/>
</nsl:events-processed>
</nsl:subscriber>
<nsl:subscriber id="rib-rms.GLCOA_sub_1"
adapter-status="RUNNING" data-collection-time="2016-09-15T15:48:00.062-04:00"
adapter-type="MESSAGE_DRIVEN_SUBSCRIBER_TYPE">
<nsl:events-processed total-events-count="1"
number-of-commits="1" number-of-rollbacks="0"
most-recent-event-time="2016-09-15T02:31:47.147-04:00"

Sample Data from Integration Monitoring Service

C-5

most-recent-event-adapter-execution-time="603"
most-recent-event-integration-api-execution-time="589">
<nsl:todays-events>
<nsl:between-hours hour="2-3" event-count="1"
adapter-execution-min-time="603" adapter-execution-max-time="603"
integration-api-execution-min-time="589"
integration-api-execution-max-time="589"/>
</nsl:todays-events>
<nsl:events on="2016-09-15T00:00:00-04:00">
<nsl:between-hours hour="2-3" event-count="1"
adapter-execution-min-time="603" adapter-execution-max-time="603"
integration-api-execution-min-time="589"
integration-api-execution-max-time="589"/>
</nsl:events>
</nsl:events-processed>
</nsl:subscriber>
<nsl:subscriber id="rib-rms.CurRate_sub_1"
adapter-status="STOPPED" data-collection-time="2016-09-15T15:48:00.061-04:00"
adapter-type="MESSAGE_DRIVEN_SUBSCRIBER_TYPE">
<nsl:events-processed total-events-count="0"
number-of-commits="0" number-of-rollbacks="0"
most-recent-event-adapter-execution-time="0"
most-recent-event-integration-api-execution-time="0">
<nsl:todays-events/>
</nsl:events-processed>
</nsl:subscriber>
<nsl:subscriber id="rib-rms.InvReqg sub_1"
adapter-status="STOPPED" data-collection-time="2016-09-15T15:48:00.062-04:00"
adapter-type="MESSAGE_DRIVEN_SUBSCRIBER_TYPE">
<nsl:events-processed total-events-count="11"
number-of-commits="6" number-of-rollbacks="5"
most-recent-event-time="2016-09-10T05:28:12.333-04:00"
most-recent-event-adapter-execution-time="45"
most-recent-event-integration-api-execution-time="179">
<nsl:todays-events/>
<nsl:events on="2016-09-10T00:00:00-04:00">
<nsl:between-hours hour="5-6" event-count="11"
adapter-execution-min-time="28" adapter-execution-max-time="511"
integration-api-execution-min-time="45" integration-api-execution-max-time="415"/>
</nsl:events>
</nsl:events-processed>
</nsl:subscriber>
<nsl:subscriber id="rib-rms.XTsf_sub_1" adapter-status="STOPPED"
data-collection-time="2016-09-15T15:48:00.066-04:00" adapter-type="MESSAGE_DRIVEN_
SUBSCRIBER_TYPE">
<nsl:events-processed total-events-count="0"
number-of-commits="0" number-of-rollbacks="0"
most-recent-event-adapter-execution-time="0"
most-recent-event-integration-api-execution-time="0">
<nsl:todays-events/>
</nsl:events-processed>
</nsl:subscriber>
<nsl:subscriber id="rib-rms.Vendor_sub_1"
adapter-status="STOPPED" data-collection-time="2016-09-15T15:48:00.064-04:00"
adapter-type="MESSAGE_DRIVEN_SUBSCRIBER_TYPE">
<nsl:events-processed total-events-count="0"
number-of-commits="0" number-of-rollbacks="0"
most-recent-event-adapter-execution-time="0"
most-recent-event-integration-api-execution-time="0">
<nsl:todays-events/>

C-6 Oracle Retail Integration Bus Implementation Guide

</nsl:events-processed>
</nsl:subscriber>
<nsl:subscriber id="rib-rms.DSDReceipt_sub_1"
adapter-status="STOPPED" data-collection-time="2016-09-15T15:48:00.061-04:00"
adapter-type="MESSAGE_DRIVEN_SUBSCRIBER_TYPE">
<nsl:events-processed total-events-count="51"
number-of-commits="27" number-of-rollbacks="24"
most-recent-event-time="2016-09-14T06:56:22.187-04:00"
most-recent-event-adapter-execution-time="530"
most-recent-event-integration-api-execution-time="472">
<nsl:todays-events/>
<nsl:events on="2016-09-10T00:00:00-04:00">
<nsl:between-hours hour="5-6" event-count="10"
adapter-execution-min-time="35" adapter-execution-max-time="3539"
integration-api-execution-min-time="1486"
integration-api-execution-max-time="3510"/>
</nsl:events>
<nsl:events on="2016-09-14T00:00:00-04:00">
<nsl:between-hours hour="6-7" event-count="41"
adapter-execution-min-time="18" adapter-execution-max-time="17712"
integration-api-execution-min-time="293"
integration-api-execution-max-time="17661"/>
</nsl:events>
</nsl:events-processed>
</nsl:subscriber>
<nsl:subscriber id="rib-rms.COReturn_sub_1"
adapter-status="STOPPED" data-collection-time="2016-09-15T15:48:00.061-04:00"
adapter-type="MESSAGE_DRIVEN_SUBSCRIBER_TYPE">
<nsl:events-processed total-events-count="0"
number-of-commits="0" number-of-rollbacks="0"
most-recent-event-adapter-execution-time="0"
most-recent-event-integration-api-execution-time="0">
<nsl:todays-events/>
</nsl:events-processed>
</nsl:subscriber>
<nsl:subscriber id="rib-rms.XDiffGrp_sub_ 1"
adapter-status="STOPPED" data-collection-time="2016-09-15T15:48:00.064-04:00"
adapter-type="MESSAGE_DRIVEN_SUBSCRIBER_TYPE">
<nsl:events-processed total-events-count="0"
number-of-commits="0" number-of-rollbacks="0"
most-recent-event-adapter-execution-time="0"
most-recent-event-integration-api-execution-time="0">
<nsl:todays-events/>
</nsl:events-processed>
</nsl:subscriber>
<nsl:subscriber id="rib-rms.InvAdjust_sub_1"
adapter-status="STOPPED" data-collection-time="2016-09-15T15:48:00.062-04:00"
adapter-type="MESSAGE_DRIVEN_SUBSCRIBER_TYPE">
<nsl:events-processed total-events-count="1"
number-of-commits="1" number-of-rollbacks="0"
most-recent-event-time="2016-09-14T06:51:42.811-04:00"
most-recent-event-adapter-execution-time="7224"
most-recent-event-integration-api-execution-time="7203">
<nsl:todays-events/>
<nsl:events on="2016-09-14T00:00:00-04:00">
<nsl:between-hours hour="6-7" event-count="1"
adapter-execution-min-time="7224" adapter-execution-max-time="7224"
integration-api-execution-min-time="7203"
integration-api-execution-max-time="7203"/>
</nsl:events>

Sample Data from Integration Monitoring Service

C-7

</nsl:events-processed>
</nsl:subscriber>
<nsl:subscriber id="rib-rms.RTV_sub_l1" adapter-status="STOPPED"
data-collection-time="2016-09-15T15:48:00.063-04:00" adapter-type="MESSAGE_DRIVEN_
SUBSCRIBER_TYPE">
<nsl:events-processed total-events-count="0"
number-of-commits="0" number-of-rollbacks="0"
most-recent-event-adapter-execution-time="0"
most-recent-event-integration-api-execution-time="0">
<nsl:todays-events/>
</nsl:events-processed>
</nsl:subscriber>
<nsl:subscriber id="rib-rms.ASNOut_sub_1"
adapter-status="STOPPED" data-collection-time="2016-09-15T15:48:00.060-04:00"
adapter-type="MESSAGE_DRIVEN_SUBSCRIBER_TYPE">
<nsl:events-processed total-events-count="0"
number-of-commits="0" number-of-rollbacks="0"
most-recent-event-adapter-execution-time="0"
most-recent-event-integration-api-execution-time="0">
<nsl:todays-events/>
</nsl:events-processed>
</nsl:subscriber>
<nsl:subscriber id="rib-rms.DSDDeals_sub_ 1"
adapter-status="STOPPED" data-collection-time="2016-09-15T15:48:00.061-04:00"
adapter-type="MESSAGE_DRIVEN_SUBSCRIBER_TYPE">
<nsl:events-processed total-events-count="10"
number-of-commits="5" number-of-rollbacks="5"
most-recent-event-time="2016-09-15T02:15:27.400-04:00"
most-recent-event-adapter-execution-time="41"
most-recent-event-integration-api-execution-time="0">
<nsl:todays-events>
<nsl:between-hours hour="2-3" event-count="10"
adapter-execution-min-time="23" adapter-execution-max-time="1613"
integration-api-execution-min-time="0" integration-api-execution-max-time="0"/>
</nsl:todays-events>
<nsl:events on="2016-09-15T00:00:00-04:00">
<nsl:between-hours hour="2-3" event-count="10"
adapter-execution-min-time="23" adapter-execution-max-time="1613"
integration-api-execution-min-time="0" integration-api-execution-max-time="0"/>
</nsl:events>
</nsl:events-processed>
</nsl:subscriber>
<nsl:subscriber id="rib-rms.XAlloc_sub_1"
adapter-status="STOPPED" data-collection-time="2016-09-15T15:48:00.064-04:00"
adapter-type="MESSAGE_DRIVEN_SUBSCRIBER_TYPE">
<nsl:events-processed total-events-count="1"
number-of-commits="1" number-of-rollbacks="0"
most-recent-event-time="2016-09-14T12:34:57.301-04:00"
most-recent-event-adapter-execution-time="4684"
most-recent-event-integration-api-execution-time="4662">
<nsl:todays-events/>
<nsl:events on="2016-09-14T00:00:00-04:00">
<nsl:between-hours hour="12-13" event-count="1"
adapter-execution-min-time="4684" adapter-execution-max-time="4684"
integration-api-execution-min-time="4662"
integration-api-execution-max-time="4662"/>
</nsl:events>
</nsl:events-processed>
</nsl:subscriber>
<nsl:publisher id="rib-rms.RcvUnitAdj_pub_1"

C-8 Oracle Retail Integration Bus Implementation Guide

adapter-status="RUNNING" data-collection-time="2016-09-15T15:48:00.071-04:00"
adapter-type="TIMER_DRIVEN_PUBLISHER_TYPE">
<nsl:events-processed total-events-count="0"
number-of-commits="0" number-of-rollbacks="0"
most-recent-event-adapter-execution-time="0">
<nsl:todays-events/>
</nsl:events-processed>
</nsl:publisher>
<nsl:publisher id="rib-rms.ASNOut_pub_1"
adapter-status="RUNNING" data-collection-time="2016-09-15T15:48:00.070-04:00"
adapter-type="TIMER_DRIVEN_PUBLISHER_TYPE">
<nsl:events-processed total-events-count="0"
number-of-commits="0" number-of-rollbacks="0"
most-recent-event-adapter-execution-time="0">
<nsl:todays-events/>
</nsl:events-processed>
</nsl:publisher>
<nsl:publisher id="rib-rms.Vendor_pub_1"
adapter-status="RUNNING" data-collection-time="2016-09-15T15:48:00.072-04:00"
adapter-type="TIMER_DRIVEN_PUBLISHER_TYPE">
<nsl:events-processed total-events-count="0"
number-of-commits="0" number-of-rollbacks="0"
most-recent-event-adapter-execution-time="0">
<nsl:todays-events/>
</nsl:events-processed>
</nsl:publisher>

<nsl:publisher id="rib-rms.WOOut_pub_1" adapter-status="RUNNING"
data-collection-time="2016-09-15T15:48:00.072-04:00" adapter-type="TIMER_DRIVEN_

PUBLISHER_TYPE">
<nsl:events-processed total-events-count="0"
number-of-commits="0" number-of-rollbacks="0"
most-recent-event-adapter-execution-time="0">
<nsl:todays-events/>
</nsl:events-processed>
</nsl:publisher>
<nsl:publisher id="rib-rms.Stores_pub_1"
adapter-status="RUNNING" data-collection-time="2016-09-15T15:48:00.072-04:00"
adapter-type="TIMER_DRIVEN_PUBLISHER_TYPE">
<nsl:events-processed total-events-count="0"
number-of-commits="0" number-of-rollbacks="0"
most-recent-event-adapter-execution-time="0">
<nsl:todays-events/>
</nsl:events-processed>
</nsl:publisher>

<nsl:publisher id="rib-rms.Diffs_pub_ 1" adapter-status="RUNNING"
data-collection-time="2016-09-15T15:48:00.070-04:00" adapter-type="TIMER_DRIVEN_

PUBLISHER_TYPE">
<nsl:events-processed total-events-count="0"
number-of-commits="0" number-of-rollbacks="0"
most-recent-event-adapter-execution-time="0">
<nsl:todays-events/>
</nsl:events-processed>
</nsl:publisher>
<nsl:publisher id="rib-rms.SeedData_pub_1"
adapter-status="RUNNING" data-collection-time="2016-09-15T15:48:00.071-04:00"
adapter-type="TIMER_DRIVEN_PUBLISHER_TYPE">
<nsl:events-processed total-events-count="0"
number-of-commits="0" number-of-rollbacks="0"
most-recent-event-adapter-execution-time="0">
<nsl:todays-events/>

Sample Data from Integration Monitoring Service

C-9

</nsl:events-processed>
</nsl:publisher>
<nsl:publisher id="rib-rms.Partner_pub_1"
adapter-status="RUNNING" data-collection-time="2016-09-15T15:48:00.071-04:00"
adapter-type="TIMER_DRIVEN_PUBLISHER_TYPE">
<nsl:events-processed total-events-count="0"
number-of-commits="0" number-of-rollbacks="0"
most-recent-event-adapter-execution-time="0">
<nsl:todays-events/>
</nsl:events-processed>
</nsl:publisher>
<nsl:publisher id="rib-rms.ItemLoc_pub_1"
adapter-status="RUNNING" data-collection-time="2016-09-15T15:48:00.071-04:00"
adapter-type="TIMER_DRIVEN_PUBLISHER_TYPE">
<nsl:events-processed total-events-count="0"
number-of-commits="0" number-of-rollbacks="0"
most-recent-event-adapter-execution-time="0">
<nsl:todays-events/>
</nsl:events-processed>
</nsl:publisher>
<nsl:publisher id="rib-rms.UDAs_pub_1" adapter-status="RUNNING"
data-collection-time="2016-09-15T15:48:00.072-04:00" adapter-type="TIMER_DRIVEN_
PUBLISHER_TYPE">
<nsl:events-processed total-events-count="0"
number-of-commits="0" number-of-rollbacks="0"
most-recent-event-adapter-execution-time="0">
<nsl:todays-events/>
</nsl:events-processed>
</nsl:publisher>
<nsl:publisher id="rib-rms.MerchHier pub_1"
adapter-status="RUNNING" data-collection-time="2016-09-15T15:48:00.071-04:00"
adapter-type="TIMER_DRIVEN_PUBLISHER_TYPE">
<nsl:events-processed total-events-count="0"
number-of-commits="0" number-of-rollbacks="0"
most-recent-event-adapter-execution-time="0">
<nsl:todays-events/>
</nsl:events-processed>
</nsl:publisher>
<nsl:publisher id="rib-rms.DiffGrp_pub_1"
adapter-status="RUNNING" data-collection-time="2016-09-15T15:48:00.070-04:00"
adapter-type="TIMER_DRIVEN_PUBLISHER_TYPE">
<nsl:events-processed total-events-count="0"
number-of-commits="0" number-of-rollbacks="0"
most-recent-event-adapter-execution-time="0">
<nsl:todays-events/>
</nsl:events-processed>
</nsl:publisher>
<nsl:publisher id="rib-rms.Order_pub_1" adapter-status="RUNNING"
data-collection-time="2016-09-15T15:48:00.071-04:00" adapter-type="TIMER_DRIVEN_
PUBLISHER_TYPE">
<nsl:events-processed total-events-count="0"
number-of-commits="0" number-of-rollbacks="0"
most-recent-event-adapter-execution-time="0">
<nsl:todays-events/>
</nsl:events-processed>
</nsl:publisher>
<nsl:publisher id="rib-rms.SeedObj_pub_1"
adapter-status="RUNNING" data-collection-time="2016-09-15T15:48:00.072-04:00"
adapter-type="TIMER_DRIVEN_PUBLISHER_TYPE">
<nsl:events-processed total-events-count="0"

C-10 Oracle Retail Integration Bus Implementation Guide

number-of-commits="0" number-of-rollbacks="0"
most-recent-event-adapter-execution-time="0">
<nsl:todays-events/>
</nsl:events-processed>
</nsl:publisher>
<nsl:publisher id="rib-rms.RTVReq pub_1"
adapter-status="RUNNING" data-collection-time="2016-09-15T15:48:00.071-04:00"
adapter-type="TIMER_DRIVEN_PUBLISHER_TYPE">
<nsl:events-processed total-events-count="0"
number-of-commits="0" number-of-rollbacks="0"
most-recent-event-adapter-execution-time="0">
<nsl:todays-events/>
</nsl:events-processed>
</nsl:publisher>
<nsl:publisher id="rib-rms.Items_pub_1" adapter-status="RUNNING"
data-collection-time="2016-09-15T15:48:00.071-04:00" adapter-type="TIMER_DRIVEN_
PUBLISHER_TYPE">
<nsl:events-processed total-events-count="0"
number-of-commits="0" number-of-rollbacks="0"
most-recent-event-adapter-execution-time="0">
<nsl:todays-events/>
</nsl:events-processed>
</nsl:publisher>
<nsl:publisher id="rib-rms.Alloc_pub_1" adapter-status="STOPPED"
data-collection-time="2016-09-15T15:48:00.070-04:00" adapter-type="TIMER_DRIVEN_
PUBLISHER_TYPE">
<nsl:events-processed total-events-count="0"
number-of-commits="0" number-of-rollbacks="0"
most-recent-event-adapter-execution-time="0">
<nsl:todays-events/>
</nsl:events-processed>
</nsl:publisher>
<nsl:publisher id="rib-rms.FulfilOrdCfm pub_1"
adapter-status="RUNNING" data-collection-time="2016-09-15T15:48:00.071-04:00"
adapter-type="TIMER_DRIVEN_PUBLISHER_TYPE">
<nsl:events-processed total-events-count="0"
number-of-commits="0" number-of-rollbacks="0"
most-recent-event-adapter-execution-time="0">
<nsl:todays-events/>
</nsl:events-processed>
</nsl:publisher>
<nsl:publisher id="rib-rms.DlvySlt_pub_1"
adapter-status="RUNNING" data-collection-time="2016-09-15T15:48:00.071-04:00"
adapter-type="TIMER_DRIVEN_PUBLISHER_TYPE">
<nsl:events-processed total-events-count="0"
number-of-commits="0" number-of-rollbacks="0"
most-recent-event-adapter-execution-time="0">
<nsl:todays-events/>
</nsl:events-processed>
</nsl:publisher>
<nsl:publisher id="rib-rms.Transfers_pub_ 1"
adapter-status="RUNNING" data-collection-time="2016-09-15T15:48:00.072-04:00"
adapter-type="TIMER_DRIVEN_PUBLISHER_TYPE">
<nsl:events-processed total-events-count="0"
number-of-commits="0" number-of-rollbacks="0"
most-recent-event-adapter-execution-time="0">
<nsl:todays-events/>
</nsl:events-processed>
</nsl:publisher>
<nsl:publisher id="rib-rms.WH_pub_1" adapter-status="RUNNING"

Sample Data from Integration Monitoring Service C-11

data-collection-time="2016-09-15T15:48:00.072-04:00" adapter-type="TIMER_DRIVEN_
PUBLISHER_TYPE">
<nsl:events-processed total-events-count="0"
number-of-commits="0" number-of-rollbacks="0"
most-recent-event-adapter-execution-time="0">
<nsl:todays-events/>
</nsl:events-processed>
</nsl:publisher>
<nsl:publisher id="rib-rms.WOIn_pub_1" adapter-status="RUNNING"
data-collection-time="2016-09-15T15:48:00.072-04:00" adapter-type="TIMER_DRIVEN_
PUBLISHER_TYPE">
<nsl:events-processed total-events-count="0"
number-of-commits="0" number-of-rollbacks="0"
most-recent-event-adapter-execution-time="0">
<nsl:todays-events/>
</nsl:events-processed>
</nsl:publisher>
<nsl:publisher id="rib-rms.Banner_pub_1"
adapter-status="RUNNING" data-collection-time="2016-09-15T15:48:00.070-04:00"
adapter-type="TIMER_DRIVEN_PUBLISHER_TYPE">
<nsl:events-processed total-events-count="0"
number-of-commits="0" number-of-rollbacks="0"
most-recent-event-adapter-execution-time="0">
<nsl:todays-events/>
</nsl:events-processed>
</nsl:publisher>
<nsl:hospital id="rib-rms.jms_hosp_0" adapter-status="STOPPED"
data-collection-time="2016-09-15T15:48:00.073-04:00" adapter-type="TIMER_DRIVEN_
HOSPITAL_SUB_TYPE"/>
<nsl:hospital id="rib-rms.sub_hosp_0" adapter-status="RUNNING"
data-collection-time="2016-09-15T15:48:00.074-04:00" adapter-type="TIMER_DRIVEN_
HOSPITAL_SUB_TYPE"/>
<nsl:hospital id="rib-rms.pub_hosp_0" adapter-status="STOPPED"
data-collection-time="2016-09-15T15:48:00.074-04:00" adapter-type="TIMER_DRIVEN_
HOSPITAL_SUB_TYPE"/>
</nsl:rib-adapters>
<nsl:error-hospital-db total-messages-in-eh="54"
total-messages-in-eh-due-to-dependency="32">
<nsl:messages-in-eh-for-family family="Receiving"
adapter-class-def="rib-rms_Receiving_sub" error-count="33" dependency-count="32"/>
<nsl:messages-in-eh-for-family family="DSDReceipt"
adapter-class-def="rib-rms_DSDReceipt_sub" error-count="2" dependency-count="0"/>
<nsl:messages-in-eh-for-family family="INVREQ"
adapter-class-def="rib-rms_InvReqg sub" error-count="2" dependency-count="0"/>
<nsl:messages-in-eh-for-family family="InvAdjust"
adapter-class-def="rib-rms_InvAdjust_sub" error-count="5" dependency-count="0"/>
<nsl:messages-in-eh-for-family family="CurRate"
adapter-class-def="rib-rms_CurRate_sub" error-count="10" dependency-count="0"/>
<nsl:messages-in-eh-for-family family="DSDDEALS"
adapter-class-def="rib-rms_DSDDeals_sub" error-count="1" dependency-count="0"/>
<nsl:messages-in-eh-for-family family="SOStatus"
adapter-class-def="rib-rms_SOStatus_sub" error-count="1" dependency-count="0"/>
</nsl:error-hospital-db>
<nsl:resource-usage>
<nsl:cpu current="0.022521019"/>
<nsl:memory current="1.0616832E9" max="1.90893261E9"
free="5.16266752E8" />
</nsl:resource-usage>
</nsl:rib-app-runtime-info>
<nsl:rib-app-runtime-info id="rib-tafr" rib-app-status="RUNNING"

C-12 Oracle Retail Integration Bus Implementation Guide

up-since="2016-09-09T05:15:22.814-04:00" total-events-count="333275">
<nsl:rib-adapters>
<nsl:subscriber id="rib-tafr.SeedData_tafr_1"
adapter-status="STOPPED" data-collection-time="2016-09-15T15:48:00.968-04:00"
adapter-type="MESSAGE_DRIVEN_SUBSCRIBER_TYPE">
<nsl:events-processed total-events-count="20"
number-of-commits="20" number-of-rollbacks="0"
most-recent-event-time="2016-09-15T05:30:01.892-04:00"
most-recent-event-adapter-execution-time="10"
most-recent-event-integration-api-execution-time="0">
<nsl:todays-events>
<nsl:between-hours hour="3-4" event-count="10"
adapter-execution-min-time="10" adapter-execution-max-time="11008"
integration-api-execution-min-time="0" integration-api-execution-max-time="2"/>
<nsl:between-hours hour="5-6" event-count="10"
adapter-execution-min-time="10" adapter-execution-max-time="3882"
integration-api-execution-min-time="0" integration-api-execution-max-time="1"/>
</nsl:todays-events>
<nsl:events on="2016-09-15T00:00:00-04:00">
<nsl:between-hours hour="3-4" event-count="10"
adapter-execution-min-time="10" adapter-execution-max-time="11008"
integration-api-execution-min-time="0" integration-api-execution-max-time="2"/>
<nsl:between-hours hour="5-6" event-count="10"
adapter-execution-min-time="10" adapter-execution-max-time="3882"
integration-api-execution-min-time="0" integration-api-execution-max-time="1"/>
</nsl:events>
</nsl:events-processed>
</nsl:subscriber>
<nsl:subscriber id="rib-tafr.OrderToOdrWH_ tafr_1"
adapter-status="STOPPED" data-collection-time="2016-09-15T15:48:00.967-04:00"
adapter-type="MESSAGE_DRIVEN_SUBSCRIBER_TYPE">
<nsl:events-processed total-events-count="26"
number-of-commits="26" number-of-rollbacks="2"
most-recent-event-time="2016-09-15T03:49:36.763-04:00"
most-recent-event-adapter-execution-time="32"
most-recent-event-integration-api-execution-time="0">
<nsl:todays-events>
<nsl:between-hours hour="3-4" event-count="26"
adapter-execution-min-time="22" adapter-execution-max-time="60012"
integration-api-execution-min-time="0" integration-api-execution-max-time="0"/>
</nsl:todays-events>
<nsl:events on="2016-09-15T00:00:00-04:00">
<nsl:between-hours hour="3-4" event-count="26"
adapter-execution-min-time="22" adapter-execution-max-time="60012"
integration-api-execution-min-time="0" integration-api-execution-max-time="0"/>
</nsl:events>
</nsl:events-processed>
</nsl:subscriber>
<nsl:subscriber id="rib-tafr.Transfers_tafr 1"
adapter-status="STOPPED" data-collection-time="2016-09-15T15:48:00.968-04:00"
adapter-type="MESSAGE_DRIVEN_SUBSCRIBER_TYPE">
<nsl:events-processed total-events-count="130"
number-of-commits="42" number-of-rollbacks="88"
most-recent-event-time="2016-09-15T04:15:42.550-04:00"
most-recent-event-adapter-execution-time="60012"
most-recent-event-integration-api-execution-time="0">
<nsl:todays-events>
<nsl:between-hours hour="3-4" event-count="83"
adapter-execution-min-time="11" adapter-execution-max-time="60022"
integration-api-execution-min-time="0" integration-api-execution-max-time="0"/>

Sample Data from Integration Monitoring Service C-13

<nsl:between-hours hour="4-5" event-count="47"
adapter-execution-min-time="11" adapter-execution-max-time="60311"
integration-api-execution-min-time="0" integration-api-execution-max-time="0"/>
</nsl:todays-events>
<nsl:events on="2016-09-15T00:00:00-04:00">
<nsl:between-hours hour="3-4" event-count="83"
adapter-execution-min-time="11" adapter-execution-max-time="60022"
integration-api-execution-min-time="0" integration-api-execution-max-time="0"/>
<nsl:between-hours hour="4-5" event-count="47"
adapter-execution-min-time="11" adapter-execution-max-time="60311"
integration-api-execution-min-time="0" integration-api-execution-max-time="0"/>
</nsl:events>
</nsl:events-processed>
</nsl:subscriber>
<nsl:subscriber id="rib-tafr.WOOut_tafr_ 1"
adapter-status="STOPPED" data-collection-time="2016-09-15T15:48:00.969-04:00"
adapter-type="MESSAGE_DRIVEN_SUBSCRIBER_TYPE">
<nsl:events-processed total-events-count="7"
number-of-commits="7" number-of-rollbacks="0"
most-recent-event-time="2016-09-15T03:33:29.768-04:00"
most-recent-event-adapter-execution-time="33"
most-recent-event-integration-api-execution-time="1">
<nsl:todays-events>
<nsl:between-hours hour="3-4" event-count="7"
adapter-execution-min-time="29" adapter-execution-max-time="11635"
integration-api-execution-min-time="1" integration-api-execution-max-time="11"/>
</nsl:todays-events>
<nsl:events on="2016-09-15T00:00:00-04:00">
<nsl:between-hours hour="3-4" event-count="7"
adapter-execution-min-time="29" adapter-execution-max-time="11635"
integration-api-execution-min-time="1" integration-api-execution-max-time="11"/>
</nsl:events>
</nsl:events-processed>
</nsl:subscriber>
<nsl:subscriber id="rib-tafr.WHToLocation_tafr_1"
adapter-status="STOPPED" data-collection-time="2016-09-15T15:48:00.969-04:00"
adapter-type="MESSAGE_DRIVEN_SUBSCRIBER_TYPE">
<nsl:events-processed total-events-count="21"
number-of-commits="21" number-of-rollbacks="0"
most-recent-event-time="2016-09-15T03:51:42.695-04:00"
most-recent-event-adapter-execution-time="29"
most-recent-event-integration-api-execution-time="1">
<nsl:todays-events>
<nsl:between-hours hour="3-4" event-count="21"
adapter-execution-min-time="11" adapter-execution-max-time="45"
integration-api-execution-min-time="0" integration-api-execution-max-time="2"/>
</nsl:todays-events>
<nsl:events on="2016-09-15T00:00:00-04:00">
<nsl:between-hours hour="3-4" event-count="21"
adapter-execution-min-time="11" adapter-execution-max-time="45"
integration-api-execution-min-time="0" integration-api-execution-max-time="2"/>
</nsl:events>
</nsl:events-processed>
</nsl:subscriber>
<nsl:subscriber id="rib-tafr.WHToWHPhys_tafr 1"
adapter-status="STOPPED" data-collection-time="2016-09-15T15:48:00.969-04:00"
adapter-type="MESSAGE_DRIVEN_SUBSCRIBER_TYPE">
<nsl:events-processed total-events-count="21"
number-of-commits="21" number-of-rollbacks="0"
most-recent-event-time="2016-09-15T03:51:41.589-04:00"

C-14 Oracle Retail Integration Bus Implementation Guide

most-recent-event-adapter-execution-time="28"
most-recent-event-integration-api-execution-time="0">
<nsl:todays-events>
<nsl:between-hours hour="3-4" event-count="21"
adapter-execution-min-time="10" adapter-execution-max-time="138"
integration-api-execution-min-time="0" integration-api-execution-max-time="1"/>
</nsl:todays-events>
<nsl:events on="2016-09-15T00:00:00-04:00">
<nsl:between-hours hour="3-4" event-count="21"
adapter-execution-min-time="10" adapter-execution-max-time="138"
integration-api-execution-min-time="0" integration-api-execution-max-time="1"/>
</nsl:events>
</nsl:events-processed>
</nsl:subscriber>
<nsl:subscriber id="rib-tafr.Partner_tafr_ 1"
adapter-status="STOPPED" data-collection-time="2016-09-15T15:48:00.967-04:00"
adapter-type="MESSAGE_DRIVEN_SUBSCRIBER_TYPE">
<nsl:events-processed total-events-count="107"
number-of-commits="37" number-of-rollbacks="70"
most-recent-event-time="2016-09-15T04:04:55.033-04:00"
most-recent-event-adapter-execution-time="60014"
most-recent-event-integration-api-execution-time="1">
<nsl:todays-events>
<nsl:between-hours hour="3-4" event-count="94"
adapter-execution-min-time="11" adapter-execution-max-time="60017"
integration-api-execution-min-time="1" integration-api-execution-max-time="2"/>
<nsl:between-hours hour="4-5" event-count="13"
adapter-execution-min-time="12" adapter-execution-max-time="60015"
integration-api-execution-min-time="0" integration-api-execution-max-time="0"/>
</nsl:todays-events>
<nsl:events on="2016-09-15T00:00:00-04:00">
<nsl:between-hours hour="3-4" event-count="94"
adapter-execution-min-time="11" adapter-execution-max-time="60017"
integration-api-execution-min-time="1" integration-api-execution-max-time="2"/>
<nsl:between-hours hour="4-5" event-count="13"
adapter-execution-min-time="12" adapter-execution-max-time="60015"
integration-api-execution-min-time="0" integration-api-execution-max-time="0"/>
</nsl:events>
</nsl:events-processed>
</nsl:subscriber>
<nsl:subscriber id="rib-tafr.StoresToStors_tafr_1"
adapter-status="STOPPED" data-collection-time="2016-09-15T15:48:00.968-04:00"
adapter-type="MESSAGE_DRIVEN_SUBSCRIBER_TYPE">
<nsl:events-processed total-events-count="32"
number-of-commits="32" number-of-rollbacks="0"
most-recent-event-time="2016-09-15T03:53:20.954-04:00"
most-recent-event-adapter-execution-time="23"
most-recent-event-integration-api-execution-time="0">
<nsl:todays-events>
<nsl:between-hours hour="3-4" event-count="32"
adapter-execution-min-time="11" adapter-execution-max-time="118"
integration-api-execution-min-time="0" integration-api-execution-max-time="1"/>
</nsl:todays-events>
<nsl:events on="2016-09-15T00:00:00-04:00">
<nsl:between-hours hour="3-4" event-count="32"
adapter-execution-min-time="11" adapter-execution-max-time="118"
integration-api-execution-min-time="0" integration-api-execution-max-time="1"/>
</nsl:events>
</nsl:events-processed>
</nsl:subscriber>

Sample Data from Integration Monitoring Service C-15

<nsl:subscriber id="rib-tafr.ASNOutToASNOt_tafr_1"
adapter-status="STOPPED" data-collection-time="2016-09-15T15:48:00.966-04:00"
adapter-type="MESSAGE_DRIVEN_SUBSCRIBER_TYPE">
<nsl:events-processed total-events-count="82"
number-of-commits="80" number-of-rollbacks="9"
most-recent-event-time="2016-09-15T04:06:13.656-04:00"
most-recent-event-adapter-execution-time="46"
most-recent-event-integration-api-execution-time="1">
<nsl:todays-events>
<nsl:between-hours hour="3-4" event-count="75"
adapter-execution-min-time="12" adapter-execution-max-time="60014"
integration-api-execution-min-time="1" integration-api-execution-max-time="1"/>
<nsl:between-hours hour="4-5" event-count="7"
adapter-execution-min-time="12" adapter-execution-max-time="85"
integration-api-execution-min-time="1" integration-api-execution-max-time="1"/>
</nsl:todays-events>
<nsl:events on="2016-09-15T00:00:00-04:00">
<nsl:between-hours hour="3-4" event-count="75"
adapter-execution-min-time="12" adapter-execution-max-time="60014"
integration-api-execution-min-time="1" integration-api-execution-max-time="1"/>
<nsl:between-hours hour="4-5" event-count="7"
adapter-execution-min-time="12" adapter-execution-max-time="85"
integration-api-execution-min-time="1" integration-api-execution-max-time="1"/>
</nsl:events>
</nsl:events-processed>
</nsl:subscriber>
<nsl:subscriber id="rib-tafr.WOIn_tafr_ 1"
adapter-status="STOPPED" data-collection-time="2016-09-15T15:48:00.969-04:00"
adapter-type="MESSAGE_DRIVEN_SUBSCRIBER_TYPE">
<nsl:events-processed total-events-count="14"
number-of-commits="14" number-of-rollbacks="4"
most-recent-event-time="2016-09-15T03:39:01.327-04:00"
most-recent-event-adapter-execution-time="12"
most-recent-event-integration-api-execution-time="1">
<nsl:todays-events>
<nsl:between-hours hour="3-4" event-count="14"
adapter-execution-min-time="12" adapter-execution-max-time="60053"
integration-api-execution-min-time="1" integration-api-execution-max-time="1"/>
</nsl:todays-events>
<nsl:events on="2016-09-15T00:00:00-04:00">
<nsl:between-hours hour="3-4" event-count="14"
adapter-execution-min-time="12" adapter-execution-max-time="60053"
integration-api-execution-min-time="1" integration-api-execution-max-time="1"/>
</nsl:events>
</nsl:events-processed>
</nsl:subscriber>
<nsl:subscriber id="rib-tafr.ItemsToItmTL_tafr_1"
adapter-status="STOPPED" data-collection-time="2016-09-15T15:48:00.967-04:00"
adapter-type="MESSAGE_DRIVEN_SUBSCRIBER_TYPE">
<nsl:events-processed total-events-count="82"
number-of-commits="82" number-of-rollbacks="0"
most-recent-event-time="2016-09-15T05:01:45.400-04:00"
most-recent-event-adapter-execution-time="11"
most-recent-event-integration-api-execution-time="0">
<nsl:todays-events>
<nsl:between-hours hour="3-4" event-count="41"
adapter-execution-min-time="10" adapter-execution-max-time="8389"
integration-api-execution-min-time="0" integration-api-execution-max-time="1"/>
<nsl:between-hours hour="4-5" event-count="39"
adapter-execution-min-time="10" adapter-execution-max-time="6102"

C-16 Oracle Retail Integration Bus Implementation Guide

integration-api-execution-min-time="0" integration-api-execution-max-time="1"/>
<nsl:between-hours hour="5-6" event-count="2"
adapter-execution-min-time="11" adapter-execution-max-time="13"
integration-api-execution-min-time="0" integration-api-execution-max-time="0"/>
</nsl:todays-events>
<nsl:events on="2016-09-15T00:00:00-04:00">
<nsl:between-hours hour="3-4" event-count="41"
adapter-execution-min-time="10" adapter-execution-max-time="8389"
integration-api-execution-min-time="0" integration-api-execution-max-time="1"/>
<nsl:between-hours hour="4-5" event-count="39"
adapter-execution-min-time="10" adapter-execution-max-time="6102"
integration-api-execution-min-time="0" integration-api-execution-max-time="1"/>
<nsl:between-hours hour="5-6" event-count="2"
adapter-execution-min-time="11" adapter-execution-max-time="13"
integration-api-execution-min-time="0" integration-api-execution-max-time="0"/>
</nsl:events>
</nsl:events-processed>
</nsl:subscriber>
<nsl:subscriber id="rib-tafr.SOStatus_tafr_1"
adapter-status="STOPPED" data-collection-time="2016-09-15T15:48:00.968-04:00"
adapter-type="MESSAGE_DRIVEN_SUBSCRIBER_TYPE">
<nsl:events-processed total-events-count="15"
number-of-commits="15" number-of-rollbacks="0"
most-recent-event-time="2016-09-15T03:35:32.813-04:00"
most-recent-event-adapter-execution-time="23"
most-recent-event-integration-api-execution-time="1">
<nsl:todays-events>
<nsl:between-hours hour="3-4" event-count="15"
adapter-execution-min-time="11" adapter-execution-max-time="2612"
integration-api-execution-min-time="0" integration-api-execution-max-time="1"/>
</nsl:todays-events>
<nsl:events on="2016-09-15T00:00:00-04:00">
<nsl:between-hours hour="3-4" event-count="15"
adapter-execution-min-time="11" adapter-execution-max-time="2612"
integration-api-execution-min-time="0" integration-api-execution-max-time="1"/>
</nsl:events>
</nsl:events-processed>
</nsl:subscriber>
<nsl:subscriber id="rib-tafr.Alloc_tafr_ 1"
adapter-status="STOPPED" data-collection-time="2016-09-15T15:48:00.966-04:00"
adapter-type="MESSAGE_DRIVEN_SUBSCRIBER_TYPE">
<nsl:events-processed total-events-count="83"
number-of-commits="29" number-of-rollbacks="54"
most-recent-event-time="2016-09-15T03:58:37.051-04:00"
most-recent-event-adapter-execution-time="25"
most-recent-event-integration-api-execution-time="0">
<nsl:todays-events>
<nsl:between-hours hour="3-4" event-count="83"
adapter-execution-min-time="12" adapter-execution-max-time="60302"
integration-api-execution-min-time="0" integration-api-execution-max-time="0"/>
</nsl:todays-events>
<nsl:events on="2016-09-15T00:00:00-04:00">
<nsl:between-hours hour="3-4" event-count="83"
adapter-execution-min-time="12" adapter-execution-max-time="60302"
integration-api-execution-min-time="0" integration-api-execution-max-time="0"/>
</nsl:events>
</nsl:events-processed>
</nsl:subscriber>
<nsl:subscriber id="rib-tafr.ASNINnToASNInL_ tafr_ 1"
adapter-status="STOPPED" data-collection-time="2016-09-15T15:48:00.965-04:00"

Sample Data from Integration Monitoring Service C-17

adapter-type="MESSAGE_DRIVEN_SUBSCRIBER_TYPE">
<nsl:events-processed total-events-count="10"
number-of-commits="10" number-of-rollbacks="0"
most-recent-event-time="2016-09-15T03:38:21.401-04:00"
most-recent-event-adapter-execution-time="25"
most-recent-event-integration-api-execution-time="1">
<nsl:todays-events>
<nsl:between-hours hour="3-4" event-count="10"
adapter-execution-min-time="12" adapter-execution-max-time="3464"
integration-api-execution-min-time="1" integration-api-execution-max-time="3"/>
</nsl:todays-events>
<nsl:events on="2016-09-15T00:00:00-04:00">
<nsl:between-hours hour="3-4" event-count="10"
adapter-execution-min-time="12" adapter-execution-max-time="3464"
integration-api-execution-min-time="1" integration-api-execution-max-time="3"/>
</nsl:events>
</nsl:events-processed>
</nsl:subscriber>
<nsl:subscriber id="rib-tafr.StoresToLoc_tafr_1"
adapter-status="STOPPED" data-collection-time="2016-09-15T15:48:00.968-04:00"
adapter-type="MESSAGE_DRIVEN_SUBSCRIBER_TYPE">
<nsl:events-processed total-events-count="32"
number-of-commits="32" number-of-rollbacks="0"
most-recent-event-time="2016-09-15T03:52:57.036-04:00"
most-recent-event-adapter-execution-time="25"
most-recent-event-integration-api-execution-time="0">
<nsl:todays-events>
<nsl:between-hours hour="3-4" event-count="32"
adapter-execution-min-time="9" adapter-execution-max-time="246"
integration-api-execution-min-time="0" integration-api-execution-max-time="1"/>
</nsl:todays-events>
<nsl:events on="2016-09-15T00:00:00-04:00">
<nsl:between-hours hour="3-4" event-count="32"
adapter-execution-min-time="9" adapter-execution-max-time="246"
integration-api-execution-min-time="0" integration-api-execution-max-time="1"/>
</nsl:events>
</nsl:events-processed>
</nsl:subscriber>
<nsl:subscriber id="rib-tafr.ASNOutToASNIn_tafr_1"
adapter-status="STOPPED" data-collection-time="2016-09-15T15:48:00.966-04:00"
adapter-type="MESSAGE_DRIVEN_SUBSCRIBER_TYPE">
<nsl:events-processed total-events-count="83"
number-of-commits="81" number-of-rollbacks="5"
most-recent-event-time="2016-09-15T04:06:15.481-04:00"
most-recent-event-adapter-execution-time="33"
most-recent-event-integration-api-execution-time="0">
<nsl:todays-events>
<nsl:between-hours hour="3-4" event-count="75"
adapter-execution-min-time="19" adapter-execution-max-time="60035"
integration-api-execution-min-time="0" integration-api-execution-max-time="0"/>
<nsl:between-hours hour="4-5" event-count="8"
adapter-execution-min-time="26" adapter-execution-max-time="41"
integration-api-execution-min-time="0" integration-api-execution-max-time="0"/>
</nsl:todays-events>
<nsl:events on="2016-09-15T00:00:00-04:00">
<nsl:between-hours hour="3-4" event-count="75"
adapter-execution-min-time="19" adapter-execution-max-time="60035"
integration-api-execution-min-time="0" integration-api-execution-max-time="0"/>
<nsl:between-hours hour="4-5" event-count="8"
adapter-execution-min-time="26" adapter-execution-max-time="41"

C-18 Oracle Retail Integration Bus Implementation Guide

integration-api-execution-min-time="0" integration-api-execution-max-time="0"/>
</nsl:events>
</nsl:events-processed>
</nsl:subscriber>
<nsl:subscriber id="rib-tafr.OrderToOdrISO_tafr_1"
adapter-status="STOPPED" data-collection-time="2016-09-15T15:48:00.967-04:00"
adapter-type="MESSAGE_DRIVEN_SUBSCRIBER_TYPE">
<nsl:events-processed total-events-count="26"
number-of-commits="26" number-of-rollbacks="2"
most-recent-event-time="2016-09-15T03:49:37.990-04:00"
most-recent-event-adapter-execution-time="30"
most-recent-event-integration-api-execution-time="0">
<nsl:todays-events>
<nsl:between-hours hour="3-4" event-count="26"
adapter-execution-min-time="24" adapter-execution-max-time="60012"
integration-api-execution-min-time="0" integration-api-execution-max-time="0"/>
</nsl:todays-events>
<nsl:events on="2016-09-15T00:00:00-04:00">
<nsl:between-hours hour="3-4" event-count="26"
adapter-execution-min-time="24" adapter-execution-max-time="60012"
integration-api-execution-min-time="0" integration-api-execution-max-time="0"/>
</nsl:events>
</nsl:events-processed>
</nsl:subscriber>
<nsl:subscriber id="rib-tafr.CustOrder_tafr 1"
adapter-status="STOPPED" data-collection-time="2016-09-15T15:48:00.966-04:00"
adapter-type="MESSAGE_DRIVEN_SUBSCRIBER_TYPE">
<nsl:events-processed total-events-count="21"
number-of-commits="7" number-of-rollbacks="14"
most-recent-event-time="2016-09-15T03:39:18.728-04:00"
most-recent-event-adapter-execution-time="38"
most-recent-event-integration-api-execution-time="1">
<nsl:todays-events>
<nsl:between-hours hour="3-4" event-count="21"
adapter-execution-min-time="12" adapter-execution-max-time="60016"
integration-api-execution-min-time="1" integration-api-execution-max-time="2"/>
</nsl:todays-events>
<nsl:events on="2016-09-15T00:00:00-04:00">
<nsl:between-hours hour="3-4" event-count="21"
adapter-execution-min-time="12" adapter-execution-max-time="60016"
integration-api-execution-min-time="1" integration-api-execution-max-time="2"/>
</nsl:events>
</nsl:events-processed>
</nsl:subscriber>
<nsl:subscriber id="rib-tafr.UDAs_tafr_ 1"
adapter-status="STOPPED" data-collection-time="2016-09-15T15:48:00.969-04:00"
adapter-type="MESSAGE_DRIVEN_SUBSCRIBER_TYPE">
<nsl:events-processed total-events-count="10"
number-of-commits="10" number-of-rollbacks="0"
most-recent-event-time="2016-09-15T03:34:45.952-04:00"
most-recent-event-adapter-execution-time="11"
most-recent-event-integration-api-execution-time="0">
<nsl:todays-events>
<nsl:between-hours hour="3-4" event-count="10"
adapter-execution-min-time="11" adapter-execution-max-time="60732"
integration-api-execution-min-time="0" integration-api-execution-max-time="1"/>
</nsl:todays-events>
<nsl:events on="2016-09-15T00:00:00-04:00">
<nsl:between-hours hour="3-4" event-count="10"
adapter-execution-min-time="11" adapter-execution-max-time="60732"

Sample Data from Integration Monitoring Service C-19

integration-api-execution-min-time="0" integration-api-execution-max-time="1"/>
</nsl:events>
</nsl:events-processed>
</nsl:subscriber>
<nsl:subscriber id="rib-tafr.RTVReq tafr_1"
adapter-status="STOPPED" data-collection-time="2016-09-15T15:48:00.967-04:00"
adapter-type="MESSAGE_DRIVEN_SUBSCRIBER_TYPE">
<nsl:events-processed total-events-count="24"
number-of-commits="24" number-of-rollbacks="0"
most-recent-event-time="2016-09-15T05:15:52.080-04:00"
most-recent-event-adapter-execution-time="34"
most-recent-event-integration-api-execution-time="1">
<nsl:todays-events>
<nsl:between-hours hour="3-4" event-count="12"
adapter-execution-min-time="12" adapter-execution-max-time="11770"
integration-api-execution-min-time="1" integration-api-execution-max-time="3"/>
<nsl:between-hours hour="5-6" event-count="12"
adapter-execution-min-time="12" adapter-execution-max-time="667"
integration-api-execution-min-time="1" integration-api-execution-max-time="2"/>
</nsl:todays-events>
<nsl:events on="2016-09-15T00:00:00-04:00">
<nsl:between-hours hour="3-4" event-count="12"
adapter-execution-min-time="12" adapter-execution-max-time="11770"
integration-api-execution-min-time="1" integration-api-execution-max-time="3"/>
<nsl:between-hours hour="5-6" event-count="12"
adapter-execution-min-time="12" adapter-execution-max-time="667"
integration-api-execution-min-time="1" integration-api-execution-max-time="2"/>
</nsl:events>
</nsl:events-processed>
</nsl:subscriber>
<nsl:subscriber id="rib-tafr.ItemsToItmISO_tafr_1"
adapter-status="STOPPED" data-collection-time="2016-09-15T15:48:00.966-04:00"
adapter-type="MESSAGE_DRIVEN_SUBSCRIBER_TYPE">
<nsl:events-processed total-events-count="82"
number-of-commits="82" number-of-rollbacks="0"
most-recent-event-time="2016-09-15T05:02:09.784-04:00"
most-recent-event-adapter-execution-time="12"
most-recent-event-integration-api-execution-time="1">
<nsl:todays-events>
<nsl:between-hours hour="3-4" event-count="41"
adapter-execution-min-time="10" adapter-execution-max-time="915"
integration-api-execution-min-time="0" integration-api-execution-max-time="1"/>
<nsl:between-hours hour="4-5" event-count="38"
adapter-execution-min-time="33" adapter-execution-max-time="3650"
integration-api-execution-min-time="0" integration-api-execution-max-time="1"/>
<nsl:between-hours hour="5-6" event-count="3"
adapter-execution-min-time="10" adapter-execution-max-time="13"
integration-api-execution-min-time="1" integration-api-execution-max-time="1"/>
</nsl:todays-events>
<nsl:events on="2016-09-15T00:00:00-04:00">
<nsl:between-hours hour="3-4" event-count="41"
adapter-execution-min-time="10" adapter-execution-max-time="915"
integration-api-execution-min-time="0" integration-api-execution-max-time="1"/>
<nsl:between-hours hour="4-5" event-count="38"
adapter-execution-min-time="33" adapter-execution-max-time="3650"
integration-api-execution-min-time="0" integration-api-execution-max-time="1"/>
<nsl:between-hours hour="5-6" event-count="3"
adapter-execution-min-time="10" adapter-execution-max-time="13"
integration-api-execution-min-time="1" integration-api-execution-max-time="1"/>
</nsl:events>

C-20 Oracle Retail Integration Bus Implementation Guide

</nsl:events-processed>
</nsl:subscriber>
<nsl:hospital id="rib-tafr.jms_hosp_0" adapter-status="STOPPED"
data-collection-time="2016-09-15T15:48:00.971-04:00" adapter-type="TIMER_DRIVEN_
HOSPITAL_SUB_TYPE"/>
<nsl:hospital id="rib-tafr.sub_hosp_ 0" adapter-status="STOPPED"
data-collection-time="2016-09-15T15:48:00.971-04:00" adapter-type="TIMER_DRIVEN_
HOSPITAL_SUB_TYPE" />
</nsl:rib-adapters>
<nsl:error-hospital-db total-messages-in-eh="0"
total-messages-in-eh-due-to-dependency="0"/>
<nsl:resource-usage>
<nsl:cpu current="0.010379236"/>
<nsl:memory current="1.06378035E9" max="1.90893261E9"
free="5.11592832E8" />
</nsl:resource-usage>
</nsl:rib-app-runtime-info>
</nsl:rib-integration-runtime-info>
</ns0:getRibIntegrationSystemStateResponse>
</S:Body>
</S:Envelope>

ORACLE’
RETAIL

Retail Integration Bus Manager

Welcome, ribadmin Logou(

rib-sim:Rib Services Health Check
Page Refreshed Tue Nov 19 2019 13:57:25 GMT+0530 (India Standard Time).

Home Adapter Manager Log Manager RIBLogs Manage C: RIB Servi

RIB Web service accessibility can verified here.Know the status of displayed web services by ping testing them .

ServiceName SecurityPolicy WsdIURL Alias Ping Status ReasonCode
Ri i ice policyC Ri itori ice? DL rib-fi rtifact_web-app_L Ping @ Unsupported Operation
alias
InjectorService policyC InjectorService?WSDL rib-sim_ws_security_user-name-alias Ping @
Home Adapter Manager — Log Manager RIBLogs Manage C: RIB Servi]

Sample Data from Integration Monitoring Service C-21

C-22 Oracle Retail Integration Bus Implementation Guide

	Contents
	Send Us Your Comments
	Preface
	Audience
	Documentation Accessibility
	Related Documents
	Customer Support
	Review Patch Documentation
	Improved Process for Oracle Retail Documentation Corrections
	Oracle Retail Documentation on the Oracle Technology Network
	Conventions

	1 Introduction
	2 Standards and Specifications
	Java Platform Enterprise Edition (Java EE)
	Java EE Server

	Java Message Service (JMS)
	JMS Provider

	Java Management Extensions (JMX)

	3 Core Concepts
	Key Functional Requirements
	Guaranteed Once-and-Only-Once Successful Delivery
	Preservation of Publication Sequence

	Message Family and Message Types
	Foundation Messages
	Transactional Messages

	RIB Message Envelope and Payloads
	Message Life Cycle
	Messaging Components
	RIB Subsystem Components
	Adapters
	JMS Domains, Destinations, Subscriptions
	JMS Message Selector
	Additional RIB JMS Message Properties

	Integration Gateway Services (IGS)
	IGS Interfaces
	Integration to IGS
	IGS Deployment Considerations
	IGS and WebLogic Server (WLS) Clustering

	Simple Message Flow
	The RIB Hospital
	RIB Hospital Dependency Check
	RIB Hospital Insert
	RIB Hospital Tables
	RIB Hospital Retry
	PUB Retry Adapter
	Hospital Attempt (Retry) Count
	JMS Delivery Count

	4 Oracle Retail Application APIs
	PL/SQL Stored Procedure APIs
	Oracle CLOB APIs
	RIB_XML and RIB_SXW Database Packages

	Oracle Object APIs
	RIB Related Database Tables

	Detail Architecture - PL/SQL Apps

	Oracle Retail Java EE APIs
	Detail Architecture Java EE Apps

	Oracle Retail SOAP APIs
	API Return Status Codes
	PL/SQL GETNEXT Return Codes
	PUB_RETRY Return Codes
	CONSUME Return Code

	5 Pre-Implementation Considerations
	RIB Software Lifecycle Management
	Centralized Configuration and Management
	Physical Location Considerations
	Pre-implementation Considerations for Multibyte Deployments
	Error Hospital Size
	JMS Server Considerations
	Using Multiple JMS Servers
	Oracle Streams AQ JMS

	High Availability Considerations
	Oracle Database Cluster (RAC) Concepts
	rib-<app> application and Oracle Database Cluster (RAC)
	WebLogic Server Cluster Concepts
	rib-<app> application and WebLogic Application Server Cluster

	6 Deployment Architecture and Options
	Recommended Deployment Options
	Distributed Deployment Alternative
	Advantages
	Disadvantages
	Who Should Use This Configuration?

	Centralized Deployment Alternative
	Advantages
	Disadvantages
	Who should use this Configuration?

	Conclusions

	7 Cloud Enhancements
	Configuring RIB-App as a Soap-App for Hybrid-Cloud Deployment
	Configuring RIB-RWMS for Hybrid Cloud Deployment Topology
	Configuring RIB-RWMS as Master Application

	Configuring RIB-RWMS as Slave Application

	8 RIB Self-Service Enablement
	Provisioning RIB-Adapters
	Provisioning System Options
	Provisioning InjectorService URL
	RIB ServiceMonitor

	9 Implementation Process
	Implementation Verification and Validation
	Implementation Environment Verification
	Integration Environment Testability

	10 Performance
	Performance Factors
	Performance and Parallel Logical Channels

	11 Security
	RIB Application Administrators Security Domain
	RIB System Administrators Security Domain

	12 Monitoring
	Monitoring the RIB at Run Time
	Instance and Central Repository
	Monitoring Data as XML
	Push Versus Pull
	Service Interfaces
	Deployment Considerations
	What is an Event?
	How are Event Count and Messages Count Related?
	Adapter Events
	Application Events
	Event Collection Schedule
	Publisher Versus Subscriber Events
	TAFR Instrumentation
	Data Retention
	Metrics Definitions
	Event Counts
	Adapter Execution Time
	API Execution Time
	Adapter Status
	Commits and Rollbacks
	CPU and Memory
	Error Hospital Metrics
	Server Status
	RIB Application Status

	JMS Console Metrics
	Monitoring Services
	Application Services
	Integration Services
	JMS Console Services
	Caching and Expiration of Data
	Updates to Functional Artifact Deployment
	Turning Off Monitoring
	Troubleshooting the Monitoring Framework
	Role of RIC
	Role of JMS Console
	Performance Considerations
	Dependency
	Security (Monitoring Services)
	External Application Integration

	13 Integration with Fusion Middleware
	General RIB to Fusion Middleware Architecture
	General Process of Integration
	Configure FWM JMS Adapter to RIB AQ JMS

	14 RIB Customization/Extension
	Prerequisites for RIB Customization
	Rules for Customization

	Message Family and Message Type Customization
	Adding a New Message Type
	Message Flows with PL/SQL Applications
	Procedure for Adding a New Message Type for PL/SQL Applications

	Message Flows with Java EE Applications
	Procedure for Adding a New Message Type for Java EE Applications

	Creating a New Message Family
	Additional Rules
	Procedure for Adding a New Message Family

	Adding New Adapters
	Adding the Custom Adapter to the rib-integration-flows.xml File
	Procedure for Adding the Flow to the rib-integration-flows.xml File

	Adding a Publishing Adapter for PL/SQL Applications
	Procedure for Adding a Publishing Adapter for PL/SQL Applications

	Adding a Publishing Adapter for Java EE Applications
	Procedure for Adding a Publishing Adapter for Java EE Applications

	Adding a Subscriber Adapter for PL/SQL Applications
	Procedure for Adding a New Subscribing Adapter for a PL/SQL Application

	Adding a Subscribing Adapter for Java EE Applications
	Procedure for Adding a New Subscribing Adapter for a Java EE Application

	Custom TAFR Adapters
	TAFR Considerations
	Transformation
	Filtering Configuration
	Routing

	Adding a New TAFR Adapter
	Procedure for Adding a New TAFR Adapter

	Custom TAFR Implementation
	Procedure for Completing Custom TAFR Implementation

	Changing an Existing TAFR Adapter

	Adding a New rib-<app>
	Adding a new PLSQL rib-<app>
	Adding a New JavaEE rib-<app>
	Adding a New SOAP rib-<app>

	Verification of RIB Customizations
	Verifying the New Message Type
	Verifying the New Message Family
	Verifying the New Publishing Adapter
	Verifying the New Subscribing Adapter
	Verifying the New TAFR Adapter

	Prerequisites for RIB Localization

	15 RIB Localization - Business Objects
	Prerequisites for RIB Localization
	Business Objects Localization
	Localization Hooks in Base Business Objects
	Region Specific Placeholders
	Localization Customization
	Adding Localization Fields
	Adding Localization Customization Fields
	Packaging

	16 Integration with External Applications
	Implementing RIB-EXT
	External Application as a Publisher
	External Application as a Subscriber
	Error Handling
	Monitoring Integration

	A External LDAP Configuration
	Introducing the Oracle Internet Directory (OID)
	Introducing the Microsoft Active Directory (AD)
	Architecture Overview
	Configuring the Oracle Internet Directory (OID) as an Authentication Provider in WebLogic
	Verifying the Oracle Internet Directory (OID) Configuration
	Using LDIF Scripts to Configure Users and Groups for OID
	Integration-oid-create-groups.ldif
	Integration-oid-create-users.ldif

	Configuring Active Directory (AD) as an Authentication Provider in WebLogic
	Verifying the Active Directory (AD) Configuration

	B Sample Data from RIB App Monitoring Service
	C Sample Data from Integration Monitoring Service

